5 research outputs found

    新疆塔里木盆地北部碳酸盐岩、碎屑岩油气富集条件及评价研究

    No full text
    该专题属中国“八五”重点科技攻关项目《新疆塔里木盆地油气资源》下属一级专题,编号为85-101-04-01。研究报告以当代沉积学、储层地质学等相关学科的最新理论为指导,系统论述了塔里木盆地北部震旦系-第三系的层序地层、沉积及成岩作用特征;深入研究了白垩-第三系沉积特征,指出中新生代陆相前陆盆地有利于生油的大型复合密集段的时空分布及有利于储盖发育的沉积体系域,指出重要储集体可划分为南北两大不同沉积体系,其中南部主要为河流-三角洲(包括辫状三角洲)沉积体系,储集物性优良。系统研究了碳酸盐岩、碎屑岩的成岩作用、成岩序列、成岩阶段划分及成岩演化特征;研究了热水热液溶蚀作用及其对储集性能的影响;划分了碳酸盐岩及碎屑岩的成岩演化系统,其中以长期浅埋型成岩系统最好,有利于原生孔隙的形成和次生空隙的形成。综合分析了该区油气源、圈闭、运移与聚集、保存等油气富集的基本条件和油气富集规律,并以储盖层评价为核心,指出塔北地区具有形成大油气田的地质条件。划分了该区大油气田的类型,提出了勘探方向,对塔北地区进行了油气远景评价,在一、二级远景区中圈出了18个油气富集带,并对塔北地区的勘探部署提出了具体建议

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore