100 research outputs found

    Four Stages of Development in the History of Chinese Sociology from the Beginning of the 20th Century to the 1930s

    Get PDF
    この訳稿は,1931 年4 月の『社会学刊』(第2 巻第3 期,中国社会学社)に掲載された蔡毓ソウの「中国社会学発展史上的四個時期」の全訳である。蔡は,「序」で中国の先秦諸子,古代ギリシャの哲学者プラトン,アリストテレスらの社会思想を社会学とは異なるものとしているし,また中国にはもともと社会学は存在せず,西洋から直接的に,日本から間接的に輸入されたものと述べている(1)。つまり,社会思想と社会学を峻別し,社会学は中国固有のものではなく輸入品であるとしている。蔡は,厳復がH. スペンサーのThe Study of Sociology(1873)を『群学肄言』というタイトルで翻訳・出版した1903 年から,自らの論文が擱筆された1930 年12月までの30 年弱の中国社会学の歴史を4 期に区分して論じている(2)。すなわち,第1 期:社会学が最初に輸入された時から1910 年代初期までの輸入期,第2 期:1919年の学生運動の直前から1925 年までの移植期,第3 期:1925 年から1930 年までの萌芽期,第4 期:1930 年ごろにようやく入ったとする建設期の4 期である。蔡は,1925 年5 月30 日の五・三〇運動が中国社会学の発展史上の重大なキーポイントとなるといい,萌芽期はこの時にはじまるとした。われわれはこの蔡毓ソウの論考をとおして,中国の社会学の30 年間にわたる発展の推移とその内容を具体的に知ることができる。訳者は,一つの学問の成立は研究者数が一定数に達した時,一定数の大学にカリキュラムが開設され,学科,学部が設置された時,学術団体が創設され,かつ機関誌が発行された時,他の学界,行政,さらに一般社会にその学問が認知され広まったばあいなどが指標になると考えている。だとすれば,まさに中国社会学の確立の過程を知ることができた

    A Kind of Software Based on GPRS to Monitor the Production Data of Oil Well

    Get PDF
    设计了一种基于gPrS(gEnErAl PACkET rAdIO SErVICE)的远程油井生产数据监测系统中的软件。采用MICrOSOfT SQl SErVEr2000及MICrOSOfT VISuAl STudIO 10.0编写了服务器软件以及基于ASP(ACTIVE SErVEr PAgES).nET的网站,使管理人员可以及时掌握每口油井的运行情况。通过gPrS实现了对采油井的实时监测,通过数据信号采集,进行远距离传输,对数据的分析处理,使用户在远端实时掌握油井的生产动态。该系统具有抗干扰性强、实时性强、成本低等优点,在实际使用中对实现数字化油田提供了一定的帮助。The paper designs a kind of monitoring systems based on GPRS to monitor the production data of oil well.The server software is designed by Microsoft SQL Server 2000 and Microsoft Visual Studio 10.0,and the website based on ASP( Active Server Pages).NET.User could know the running status of every oil well in time by monitoring based on GPRS.Users could understand the dynamic production datain real-time by remotely transferring the collected signals and analyzing data.The system has the advantages of strong anti-jamming ability,good real-time performance and low cost.In practice,this software will be useful to build digitized oilfield enterprises

    全氟磺酸聚合物-石墨烯奈米生物高分子薄膜開發與在生物感測器之應用

    No full text
    本研究計畫主要係探製備討全氟磺酸聚合物(Nafion)-石墨烯(Graphene)奈米生物複合薄膜並修飾於玻璃碳電極(glassy carbon electroe, GCE)上,製備成化學感測器和生物感測器。希望藉由Nafion-Graphene奈米複合薄膜之電催化與增加電子傳遞速度的特性來增加感測器對受測物的各種電化學表現。本研究計畫為三年計畫,第一年計畫以Nafion-Graphene奈米複合薄膜修飾於GCE上,接著用循環伏安法(cyclic voltammetry)及方波伏安法(square wave voltammetry)分別對阿斯匹靈與乙醯胺酚進行偵測以得到最佳靈敏度與偵測極限,再以此修飾電極在最佳參數下分別偵測市面上販售含阿斯匹靈與乙醯胺酚的藥品來確保其準確度。在第二年將以辣根過氧化酵素(horseradish oxidoreductase, HRP)固定於Nafion-Graphene奈米複合薄膜並修飾於GCE上,製備出具有直接電子傳遞特性的過氧化氫(H2O2)感測器,再利用此電極以循環伏安法及安培法對過氧化氫進行偵測以得到此感測器效能之各參數最適值。最後一年將把DNA探針固定於Nafion-Graphene奈米複合薄膜並修飾於GCE上,用微分脈衝伏安法(differential pulse voltammetry)探討與標的DNA雜交時所偵測到的電流及電位訊號,以得到各種最佳之效能參數並進行機制探討。而各階段Nafion-Graphene結合酵素或DNA探針的表面性質將以原子力顯微鏡(atomic force microscopy, AFM)及掃描式電子顯微鏡(scanning electron microscope, SEM)對其表面進行觀察,期望藉由本計畫的執行能將Nafion-Graphene奈米生物複合薄膜廣泛利用於電化學生物感測器的應用。Graphene has been attracted great attention in many fields such as supercapacitors, hrdrogen storage and chemical sensors due to its high surface area, remarkable electrical conductivity and high thermal conductivity. Graphene has the ability to promote electron transfer when used as the electrode material, which provides a new way of designing novel electrochemical sensors, biosensors and DNA sensors. In this proposal, Nafion was used as a dispersant to disperse graphene in aqueous solution. In addition, Nafion can also increase the immobilization stability of graphene with enzyme on GCE surface due to its excellent film forming ability. And the feasibility to use Nafion-graphene nanocomposite for determination of acetylsalicylic acid, acetaminophen, hydrogen peroxide, and DNA is proposed. The surface morphology of the resulting film will be investigated by scanning electron microscopy and atomic force microscopy. The incorporation of horseradish peroxidase within Nafion-graphene nanocomposite will be investigated by electrochemical impedance spectroscopy. The electroanalytical response of the Nafion-graphene nanocomposite film modified electrode will be evaluated by cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and amperometry to find out the optimal values

    The Research of Tongue Pressure Measurement on the Palate

    No full text
    采用全口义齿对上颌缺损进行修复后,舌肌的功能性运动对义齿基托的压力由上颚以及牙槽骨组织进行承担,适当的压力有利于牙槽骨正常发育,过大的压力则会加快牙槽骨的退化速度。上颚所受压力状况不仅对义齿的固定具有影响,更与患者口腔健康息息相关。因此,口腔修复学界对舌肌对上颚的压力测定都有着比较密切的关注。 针对以上问题,本文设计了一种舌肌对上颚的压力测量系统,论文主要开展了以下研究工作: 1.针对低压力(0.5N)、低变化量(0.02N)的压力测量,对弹性元件的受力结构进行分析,通过固定梁结构实现了机械形变的放大,解决了灵敏度低的问题,制作了基于康铜薄膜应变片的压力传感器;针对应变片的微小电阻信号变化...By using complete denture to restoration maxillary defect, the functional movement of tongue would bring supporting pressure to denture base, which borne by the palate and alveolar bone. A proper pressure would keep alveolar bone healthy, while put too much pressure on it would makes the bone absorption by oral mucosa faster. Pressure on the palate not only affects the position of denture, but als...学位:工学硕士院系专业:物理与机电工程学院_机械制造及其自动化学号:1992012115272

    Nanoelectrode Arrays for Biosensing

    No full text
    奈米電極(nanoelectrode)具有少量樣品需求、質傳速度快、和低界面電容等優點,適合應用於電化學領域。因此,利用微電極的應用概念,我們將以奈米電極陣列發展生物感測器,以求更高的靈敏度與應用性。本計畫為三年計畫,第一年運用西班牙國家高等科學研究委員會合作團隊所製作出的奈米電極陣列,進行電極特性探討。首先,將以原子力顯微鏡(atomic force microscopy)與掃描式電子顯微鏡(scanning electron microscopy)觀察奈米電極陣列表面形貌。接著再使用電化學方法,探討對此奈米電極陣列對過氧化氫和β-菸鹼醯胺腺嘌呤二核甘酸的電行為,並評估此奈米電極陣列應用於生物感測器的可行性。第二年則是利用將奈米電極陣列製作葡萄糖感測器和酒精感測器。以導電高分子將酵素分散,再以電化學聚合方式將葡萄糖氧化酵素與高分子一起固定修飾於奈米電極表面,並以傅立葉紅外線光譜儀(FT-IR)確認酵素固定。接著使用AFM和SEM觀察生物複合材料的表面性質,另外再以循環伏安法(cyclic voltammetry)和安培法(amperometry)探討高分子-酵素生物複合材料的電化學催化性質,並對葡萄糖生物感測器和酒精感測器之電流訊號做探討,找出影響葡萄糖感測器效能的各參數並將之最適化。本計畫第三年將藉著先前兩年的技術與經驗,將生物感測器更延伸應用於DNA生物感測器。找出能有效地分散DNA的導電高分子,並以電化學聚合方式將DNA和高分子一起修飾奈米電極表面,再以紫外光/可見光(UV-Vis)確認DNA成功固定。此種生物複合材料表面以AFM觀察DNA分散狀態及其膜的均勻度。以循環伏安法和安培法探討其電化學催化性質,並對DNA生物感測器之電流訊號做探討,找出影響DNA感測器的各個參數並使之最適化。There are many advantages about the nanoelectrode electrode when employed in electrochemical application such as small sample volume, fast mass transport rate, low interfacial capacitance, and so on. In principle by decreasing electrode size, study of faster electrochemical reaction should be possible. Due to the electron transfer process is less likely to be limited by the mass transport of reactant to the electrode surface at fast mass transport rate. Based on those benefits, we will develop the biosensor by using the nanoelectrode arrays which is provided by Instituto de Microelectronica de Barcelona, CNM-CSIC. At first, to estimate the probability for application of nanoelectrode arrays, we investigate the morphology of the nanoelectrode arrays by atomic force microspcopy (AFM) and scanning electron microscope (SEM). The electrocatalytic behavior of the nanoelectrode arrays toward electrochemical oxidation of hydrogen peroxide and β-nicotinamide adenine dinucleotide (NADH) is studied. According to the above testing, we fabricate biosensor for detecting glucose and alcohol by nanoelectrode arrays. The electroananlytical response of the modified nanoelectrode arrays is investigated by cyclic voltammetry (CV) and amperometry method to find out the optimal value. To further application, we will fabricate DNA biosensor which is important to the diagnosis and treatment of genetic diseases. The influence of experimental parameters are explored to optimize the electroanalytical performance of the DNA sensor. The DNA and enzyme are incorporated into conducting polymers by entrapment of DNA probes and enzyme within electropolymerized polymer film. The aim of this plan is to achieve the biosensors with faster response time, simple preparation, and highly sensitivity

    Biosensors Based on Multiwalled Carbon Nanotubes-Poly(Vinyl Alcohol) Nanoccmposite

    No full text
    本研究計畫主要希望能發展將多層壁奈米碳管懸浮於含有聚乙烯醇的水溶液中,而得到一均勻分散溶液,再將多層壁奈米碳管-聚乙烯醇均勻溶液修飾在玻璃碳電極上(glassy carbon electrode),利用循環伏安法(cyclic voltammetry)探討其電催化性質,利用交流阻抗法(impedance)探討離子在電化學反應過程中傳遞機構,並和傳統電極比較反應物質在溶液中質傳和電子傳遞行為,採用奈米碳管是希望藉由奈米碳管的電催化特性,提高受測物質的氧化/還原性質,而聚乙烯醇則為一無毒性與生物相容性水膠。再進一步利用這均勻分散的多層壁奈米碳管-聚乙烯醇溶液中加入各種酵素製作成一新穎的奈米生物薄膜,進而修飾在電極上, 做為生物感測器的研究,以安培法(amperometry)探討各種生物感測之靈敏度和偵測極限,以石英震盪微量天平(quartz crystal microbalance, QCM)探討酵素和待測物質反應時重量變化進而探討其反應機制。將製備完成的各種生物感測器偵測溶液中的葡萄糖(glucose)、膽固醇(cholesterol)、乳酸(lactate)、酚(Phenol)、乙醇(ethanol)等生物分子的含量。期望藉由水溶性高分子、多層壁奈米碳管及酵素的結合,能成功發展出靈敏度高、穩定性好的生物感測器

    Preparation of Ptru-Graphene-Nafion Composite for Direct Methanol Fuel Cell

    No full text
    直接甲醇燃料電池是解決現今能源問題的方法之一,但是在應用上存在著甲醇在陽極氧化的電壓過高的問題,根據文獻指出使用鉑釕奈米粒子可以有效增加甲醇的氧化電活性,又因為石墨烯對於電化學分析與燃料電池是個不錯的觸媒載體且具有增加電子傳遞速度及電催化效果。故本研究計畫是希望以電化學循環伏安法,還原沈積鉑釕觸媒在石墨烯-全氟磺酸聚合物薄膜上,形成鉑釕-石墨烯-全氟磺酸聚合物奈米高分子複合膜,以此薄膜當作是直接甲醇燃燒電池陽極觸媒材料,以循環伏安法探討此陽極不同原子比的鉑釕觸媒材料對甲醇氧化的活性,並使用場發射式電子顯微鏡和穿透式電子顯微鏡對該薄膜的表面形貌作鑑定,再使用X光能量散譜儀作元素分析,並探討鉑釕-石墨烯-全氟磺酸聚合物陽極觸媒材料對甲醇氧化電活性的長時間穩定性,綜合以上結果找出此薄膜在直接甲醇燃料電池上各種參數的最佳化,並將結果和本研究團隊已發展的鉑釕-多層壁奈米碳管-全氟磺酸聚合物複合薄膜比較其優劣,期望將來能應用在直接甲醇燃料電池的使用上。Direct methanol fuel cell (DMFC) is considered as one of the most promising choices to solve the energy problems in the future. However, the sluggish kinetics of methanol oxidation at anode which led to high overpotentials is one of the problems for practical application. The use of platinum(Pt) and ruthenium(Ru) nanoparticles for the enhancement of the electrochemical oxidation of methanol is reported. Graphene has been considered as a promising material for catalyst support in electrocatalysis and fuel cells due to its chemical stability and good electrical conductivity. In this proposal, Pt and Ru nanoparticles are electrodeposited within graphene-Nafion matrix by a cyclic voltammetry method. The resulting PtRu-graphene-Nafion film is characterized by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The different ratio of PtRu catalyst is investigated in the electrocatalytic ability towards methanol oxidation by a cyclic voltammetry method. The aim of this work is to investigate the electrodeposition of PtRu nanoparticles within graphene-Nafion nanocomposite film in order to improve the electrocatalytic ability toward the electrochemical oxidation of methanol

    97年度育成中心知識服務環境建構計畫動態整合服務功能之育成支援中心

    No full text
    國立中興大學創新育成中心為本育成支援中心之主要執行者,以整合資源與知識管理為基礎,而為提升育成產業之服務品質,加強其服務能力,本計畫朝加速促成知識與資訊平臺融合方向邁進,藉由資訊科技整合育成相關知識,以建構育成產業的知識服務環境,並結合區域內各育成中心之特有資源及共通性專業服務資源,加強創新創業的專業輔導能量與品質。因此,將全程計畫分為三階段執行:第一階段以建構基礎技術交流與服務網絡支援平臺、整合育成中心內部專長暨相關資源、服務區域內育成中心及育成企業;第二階段建置資訊平臺、整合育成中心外部相關資源、蓄
    corecore