11 research outputs found

    海南凤丫蕨属的分类订正

    No full text
    凤丫蕨属(Coniogramme)隶属广义凤尾蕨科(Pterdidaceae)的珠蕨亚科(Cryptogrammoideae),分类极其混乱。本文在原始文献和标本考证的基础上,通过野外考察,对海南凤丫蕨属的分类进行了订正。承认海南有该属植物3种:海南凤丫蕨(C.macrophylla Blume Hieron.)、普通凤丫蕨(C.intermedia Hieron.)和凤丫蕨(C.japonica Thunb.Diels)。将C.merrillii Ching和披针凤丫蕨(C.lanceolata Ching ex K.H.Shing)并入C.macrophylla作为异名处理;首次报道凤丫蕨在海南的分布,并对其它两种在海南的分布进行了补充

    双曲柄2K-H轮系大摆角换向装置运动分析

    No full text
    针对游梁式抽油机冲程小、耗能大、运动性能差的缺陷,以及无游梁式抽油机普遍存在的可靠性不高、传动不平稳的问题,提出了一种通过机械特性实现纯机械无切换式换向的长冲程抽油机换向装置设计方案。通过逆平行四边形机构和齿轮并联输入2K-H行星轮系,在并联齿轮特定传动比下实现装置换向。新型换向装置避免了电机和链条换向的可靠性问题以及非圆齿轮换向的振动问题;相对于曲柄摇杆换向,在传动效率上有所提升。对换向装置进行了运动分析,并通过多参数运算仿真对比,分析了各参数对装置运动性能的影响。结果表明,新型换向装置的下冲程时间相比上冲程较短,有助于提高生产效率;可根据实际工作需求调节机构参数,以适应工况要求,在实际应用时有更高的设计兼容性;可实现高效可靠的换向工作,在塔架抽油机未来发展中有广泛的应用前景

    Research Progresses in a Flow Redox Battery

    No full text
    和通常熟悉的以固体或气体材料作电极的化学电源不同,液流电池的活性物质是流动着的电解质溶液,是一种可实现规模化储能的电化学装置.本文简要综述液流电池的发展历史及其研究现状,瞻望发展前景,并提出它存在的主要问题.As a large scale electrochemical storage device, flow redox battery in which the active materials are flowing electrolytes is different from the common batteries employing solid or gas materials as an electrode. In this paper we introduced flow redox battery in brief, reviewed its development and actual state on (study). The main problem existed in the new device was discussed when viewed with its future developments.作者联系地址:厦门大学化学系,中国科学院大连化学物理研究所燃料电池工程中心,厦门大学化学系,厦门大学化学系,厦门大学化学系,厦门大学化学系,厦门大学化学系 厦门大学宝龙电池研究所固体表面物理化学国家重点实验室福建厦门361005 ,辽宁大连116023 ,厦门大学宝龙电池研究所固体表面物理化学国家重点实验室福建厦门361005 ,厦门大学宝龙电池研究所固体表面物理化学国家重点实验室福建厦门361005 ,厦门大学宝龙电池研究所固体表面物理化学国家重点实验室福建厦门361005 ,厦门大学宝龙电池研究所固体表面物理化学国家重点实验室福建厦门361005 ,厦门大学宝龙电池研究所固体表面物理化学国家重点实验室福建厦门361005Author's Address: *1, ZHANG Hua-min~2, JIN Ming-gang~1, ZHENG Ming-sen~1, ZHAN Ya-ding, SUN Shi-gang~1, LIN Zu-geng~11. State Key Lab for Physical Chemistry of Solid Surface and Xiamen Univ.-PowerLong Battery Institute, Department of Chemistry , Xiamen University, Xiamen 361005, China ,2.Fuel cell R & D Center,Dalian Institute of Chemical Physics,Chinese Academy of Science,Dalian 116023,Chin

    液流电池研究进展

    No full text
    和通常熟悉的以固体或气体材料作电极的化学电源不同,液流电池的活性物质是流动着的电解质溶液,是一种可实现规模化储能的电化学装置.本文简要综述液流电池的发展历史及其研究现状,瞻望发展前景,并提出它存在的主要问题

    爆炸法制备Sm_2Fe_(17)N_y永磁体

    No full text
    本文介绍了爆炸烧结Sm_2Fe_(17)N_7永磁体的试验及其结果.试验时,在外加磁场下把Sm_2Fe__(17)N_y磁粉取向压制成形后装人金属包套内并抽真空,炸药装在包套外的纸筒内,雷管引爆炸药后,在爆轰压力作用下,磁粉被压实而烧结成磁体。试验结束后,取出磁体测量密度及磁性参数。烧结磁体密度在理论密度6的85%~96%范围内,磁能积大于88 KJ?m~(-3)。它表明,爆炸烧结工艺是制备Sm_2Fe_(17)Ny永磁体的有效工艺

    Research Progresses in a Flow Redox Battery

    No full text
    [中文文摘]和通常熟悉的以固体或气体材料作电极的化学电源不同,液流电池的活性物质是流动着的电解质溶液,是一种可实现规模化储能的电化学装置.本文简要综述液流电池的发展历史及其研究现状,瞻望发展前景,并提出它存在的主要问题.[英文文摘]As a large scale electrochemical storage device, flow redox battery in which the active materials are flowing electrolytes is different from the common batteries employing solid or gas materials as an electrode. In this paper we introduced flow redox battery in brief, reviewed its development and actual state on (study). The main problem existed in the new device was discussed when viewed with its future developments.973项目(2002CB211800); 国家自然科学基金(20373058); 福建省科技项目(2003H044)资助

    爆炸烧结Sm_2Fe_(17)N_y永磁体

    No full text
    自从1990年初Coey和孙弘发现R_2Fe_(17)N,化合物以来,人们对R_2Fe_(17)N,的内禀磁性和永磁性进行了大量的研究。Sm_2Fe_(17)N_y(y>2)由于具有优良的内禀磁性(居

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text
    corecore