8 research outputs found

    中国城市规模体系及其空间格局Zipf-PLE模型的评价

    No full text
    近30 a来,中国城市规模体系发生了重大变化,突出表现在人口城市化、用地城市化和经济城市化方面。利用GIS平台,综合城市常住人口、建成区面积和经济总量等因素构建Zipf-PLE模型,以全国县级以上城市为研究对象,对中国城市规模体系的空间格局进行了深入研究。结果显示:(1)2010年,中国城市规模体系等级健全且成熟,呈现"中间略大、底端偏小"的较为合理的金字塔格局。其中,西部地区城市规模体系结构最为合理,呈现出"底端大,顶端小"的金字塔格局;东部地区城市体系等级比较健全,中等城市最多,呈现"中间大,两端小"的金字塔格局;中部地区城市体系等级不全,超大城市缺失,呈现"中底端大,顶端小"的金字塔格局。(2)中国省域城市规模体系是合理的,中等合理以上的省份占90.32%。除直辖市外,全国27个省份中有8个省份城市规模体系趋于分散,19个省份趋于集中。(3)对全国省域城市规模体系进行合理度分区,京、沪、津、渝、新、黑、桂、陕、甘、闽、吉11省市为高合理区;粤、晋、云、湘、贵、辽、赣、苏、浙、川、冀、豫12个省(区)为较高合理区;鄂、鲁、皖为中等合理区;琼、蒙、宁为低合理省区;青、藏为不合理省(区)

    モデル検査技術を利用したプログラム解析器の生成ツール

    Get PDF
    本論文では,時相論理式によって仕様が記述されたプログラム解析をモデル検査技術の利用によって行うツールについて述べる.本ツールは,対象プログラム言語はJimple,プログラム解析の仕様記述言語は時相論理CTL-FVである.JimpleはJavaと相互変換可能な3番地コードからなる中間言語であり,Javaに比ベプログラム解析や最適化が適用しやすい.また,CTL-FVはCTL(Computation Tree Logic)を拡張した時相論理であり,プログラム中の情報を述語に引用することを許したところに大きな特徴がある.CTL-FVによって多くのプログラム解析が記述できるため,本ツールを使用するとJimpleプログラムに対し様々な解析を自動的に行うことができるようになる.今回,モデル検査を既存のモデル検査ツールSMVをそのまま利用することによって実装が非常に簡単になり,Java言語で約500行(コメント除く)のプログラムでこれが実現できた.また,標準ライブラリのいくつかのクラスに対して無用命令の検出を本ツールにより実行したところ,比較的大きなサイズのクラスに対しても数分で解析することができた.ここでは,主に本ツールの設計と実装について説明する. : In this paper, we describe a tool that automatically performs program analysis using model-checking techniques. The tool has two characteristics; the target program is Jimple, and the specification of program analysis is described in temporal logic CTL-FV. Jimple is mutually convertible with Java; it is a 3-address intermediate language and is easier to perform program analyses and optimizations than Java. CTL-FV is an extension of CTL (Computation Tree Logic) to allow quoting information in a program to formulas. CTL-FV can describe many program analyses, thus our tool can carry out various analyses automatically. By the use of the well-developed model- checker SMV, we implemented this tool with only 500 lines of code in Java. As an example, dead code detection is performed to some classes in the standard library, and relatively large classes can be analyzed in a few minutes. We explain the design and the implementation of the tool

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore