8 research outputs found

    High-quality InGaN epilayers grown by PA-MBE and abnormal incorporation behavior of Indium into InGaN

    No full text
    Growth behaviors of InxGa1-xN (x <= 0.2) materials by plasma-assisted molecular beam epitaxy (PA-MBE) are investigated in detail. A precise control of the incorporation of indium into InxGa1-xN at a growth temperature of 580 degrees C is realized. The In019Ga0.81N shows a very narrow width of 587 arcsec for the (10.2) asymmetrical reflection from high-resolution X-ray diffraction and the background electronic concentration is 3.96 x 10(18) cm(3). In the region of metal-rich growth, no negligible indium incorporation is observed even if the Ga beam flux is much larger than the equivalent N flux. This growth behavior might be ascribed to an incomplete Ga incorporation during InGaN growth. In addition, a slight increase of In flux results in crystalline quality degradation of InGaN epilayers

    GaAs tunnel junction grown using tellurium and magnesium as dopants by solid-state molecular beam epitaxy

    No full text
    <span lang="EN-US" style="font-family: &quot;Calibri&quot;,&quot;sans-serif&quot;; font-size: 10.5pt; mso-bidi-font-size: 11.0pt; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: 宋体; mso-fareast-theme-font: minor-fareast; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;"><font color="#000000">We report a GaAs tunnel junction crown by all-solid-state molecular beam epitaxy (MBE), using tellurium (Te) and magnesium (Mg) as n- and p-type dopants, respectively. The growth conditions, including V/III ratio, and growth rate, growth temperature, were optimized. Through these optimizations, Te- and Mg-doped GaAs with high carrier concentrations as well as good mobilities were obtained. A GaAs tunnel junction with a peak current density of 21 A/cm(2) was demonstrated. (C) 2014 The Japan Society of Applied Physics</font></span

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text
    corecore