26 research outputs found

    Manipulating Micro Particle by Micro Electromagnetic Force by Wire Array

    Get PDF
    当磁粒子包裹相应的外层物质时,可以与细胞产生选择性黏附,该特性可用于细胞分离、分选、药物运输等。在硅片上制作导线阵列,通过对相应导线阵列的通断电控制,可以操纵微磁粒子运动,也就控制了与其相联的细胞运动。细胞运动到指定位置,借助工具对细胞进行操作,研究细胞特性。 本论文研究工作的主要内容如下: 1.全面地概述了国内外细胞操纵方法的发展状况与工作原理。 2.从理论上对基于导线阵列产生的微电磁力操纵磁粒子方案进行可行性分析,并使用有限元分析软件ANSYS作导线阵列相关的电磁场分布情况模拟分析、在有培养液情况下的温度场分布情况模拟分析,以及用计算软件Matlab对磁粒子在局部磁场作用下所受到的电...The magnetic particle according to the outside layer material wrap up, can produce the selectivity with cell to stick to attach, this characteristic can be used for the cell separation, choose separately, the medicine conveyance etc. The electric order of different wires is changed to form a moving micro electromagnetic field, and then the particle movement can be manipulated, and also the cell mo...学位:工学硕士院系专业:物理与机电工程学院物理学系_精密仪器及机械学号:2005130172

    Simulation of Manipulating Microparticle with Wire Arrays and Heating of Wires

    Get PDF
    磁粒子根据所包裹的外层物质,可以与细胞产生选择性黏附,该特性可用于细胞分离、分选、药物运输等。基于载流导线阵列对磁性粒子的微电磁力作用,当磁粒子和细胞联结在一起时,便可对细胞进行定位和运动控制。改变不同导线的通电时序,就可以形成运动的微电磁场,从而控制微磁粒子运动,也就控制了细胞的运动。仿真结果证明,采用导线阵列产生的运动微电磁场,可以对细胞进行精确定位和运动控制。同时,也对导线发热量进行了仿真,结果表明,在驱动磁粒子运动时,导线的发热量在允许的范围内。The magnetic particle can produce selective adhesion to cell according to the wrapping layer, and this feature can be used for the cell separation, selection and medicine transportation, etc. Based on the micromagnetic force of conducting wire array to the magnetic particle, the positioning and sport controlling of cell can be performed if it is combined to magnetic particl. A moving microelectromagnetic field is formed by changing the electrying orders of the current-conducting wires to manipulate the movement of the magnetic particle, i.e. the cell. The simulation results indicated that the cell can be postioned and manipulated exactly by the microelectromagnetic field created by the electrical wire arrays, and the output calories of electric current is within the scope allowed in driving the particle

    Simulation of manipulating micro particle by micro electromagnetic force with wire arrays

    Get PDF
    当磁粒子包裹相应的外层物质时,可以与细胞产生选择性黏附,该特性可用于细胞分离、分选、药物运输等。在硅片上制做导线阵列,通过对相应导线阵列的通断电控制,可以控制微磁粒子运动,也就控制了与其相联的细胞运动。细胞运动到指定位置,借助工具对细胞进行操作,研究细胞特性。讨论导线阵列的MEMS工艺,对通电导线产生的磁场、温度场进行了仿真,了解电磁力大小的影响因素。The magnetic particle according to the outside layer material wrap up,can produce the selectivity with cell to stick to attach,this characteristic can be used for the cell separation,choose separately,the medicine conveyance etc.The electric order of different wires is changed to form a moving micro electromagnetic field,and then the particle movement can be manipulated,and also the cell movement can be manipulated.When the cell reaches the destination,use the tool to manipulate the cell and research the characteristic of the cell.And discussing the MEMS technique of wire array,simulate the magnetic field and temperature field,and know the influence factors on electromagnetic force

    Study on Manipulating an Individual Cell by Micro Electromagnetic Force with Wire Arrays

    Get PDF
    在硅片上制作多层交叉网格导线。当给导线通上适当电流并控制通电导线的电流方向,在相应的导线交叉网格区域会产生一个微电磁场,对磁场中的微磁粒子产生吸引力。如果把细胞和这些磁粒子结合在一起,就可以利用该微电磁场对细胞进行定位。改变不同导线的通电时序形成运动的微电磁场,进而可以控制微磁粒子的运动,也就控制了细胞的运动。仿真结果证明,采用导线阵列产生的运动微电磁场,可以对细胞进行精确定位和运动控制。By giving the appropriate current and controlling the current direction in multiple layers staggered mesh wires integrated on the silicon chip,a micro-electromagnetic field was created on the relevant staggered mesh. The micro-magnetic particles in this field would be attracted by the micro-electromagnetic field. We could manipulate the micro-magnetic field to orient a cell by combining the cell with the particles. The electric orders of different wires were changed to form a moving micro electromagnetic field,and then the particles movement could be manipulated,and the cell movement also could be. According to the simulation results,the cell can be oriented exactly and manipulated by micro-electromagnetic field created by electrical wire arrays

    Anti-demodecidosis activity and skin safety ofJatropha curcas.1 leaves extract in vitro

    Get PDF
    目的 探讨麻风树叶治疗蠕形螨病的应用价值。方法 用80%乙醇热回流提取法提取麻风树叶提取液。取蠕形螨感染者面部皮脂,分离并鉴定蠕形螨备用。设不同浓度麻风树叶实验组、2%浓度的甲硝唑对照组和生理盐水对照组,进行体外抗螨实验。pH仪测定不同浓度麻风树叶提取物pH值。设麻风树叶实验组和75%乙醇对照组,用健康家兔进行皮肤刺激实验和急性皮肤毒性实验。结果 50、25、12 mg/ml麻风树叶组与2%甲硝唑组毛囊蠕形螨死亡时间分别为(1.55±0.67)min、(1.61±0.67)min、(2.47±0.80)min和(1.20±0.48)min。50、25 mg/ml麻风树叶组以及2%甲硝唑组两两之间差异无统计学意义(P均〉0.05)。50、25、12 mg/ml麻风树叶提取液pH值分别为6.07±0.73、6.27±0.82、6.35±0.83,对家兔完整皮肤及破损皮肤刺激评分均为0,且无明显毒性。结论 麻风树叶提取物具有较强的体外抗蠕形螨活性且具有皮肤安全性。Objective To test the application value of the extract of Jatropha curcas.l leaves in treatment of demodecidosis. Methods Jatropha curcas.1 leaves were extracted with 80% ethanol by using heat reflux method. Facial sebum specimen from demodecidosis-infected patients were used to isolate and identify demodecidosis. Different concentration groups of Jatropha curcas.l leaves, 2% metronidazole control group and physiological saline control group were defined. The anti-demodecidosis experiment was performed in vitro. The pH value of different concentrations of Jatropha curcas.l leaves extract was determined. Skin irritation test and acute skin toxicity test were carried out in healthy rabbits, and Jatropha curcas.1 leaves and 75% ethanol served as experiment and control groups, respectivelyl Results The mite-killing time was (1.55-4-0.67) min with 50 mg/ml Jatropha curcas.l leaves extract, (1.61-4-0.67) min with 25 mg/ml Jatropha curcas.l leaves extract, (2.47-4-0.80) min with 12 mg/ml Jatropha curcas.l leaves extract, and (1.20-4-0.48) min with 2% metronidazole. There was no significant different between 50, 25 mg/ml Jatropha curcas.l leaves extract groups and 2% metronidazole group (P 〉 0.05). The pH value was 6.07+0.73 of 50 mg/ml Jatropha curcas.l leaves extract, 6.27-1-0.82 of 25 mg/ml Jatropha curcas.l leaves extract and 6.35-4-0.83 of 12 mg/ml Jatropha curcas.1 leaves extract. Score for irritation to normal and wounded rabbit skin was both 0, and acute toxicity test showed no significant toxicity. Conclusions Jatropha curcas.l leaves extract shows a remarkable activity to demodecidosis with skin safety in vitro.漳州市自然科学基金(ZZ2014J33

    Extraction of Depth Information and Image Processing in Manipulator Cell Injection

    Get PDF
    在细胞注射时,显微镜上CCD获取的只是注射针的二维信息,但光轴方向的深度信息丢失,这会导致细胞注射的失败,必须用其他方法获得。利用激光三角测量法对注射针以及细胞载玻片的深度信息进行测量,通过纳米平台的移动来标定激光入射角参数,对获取的数据进行图形化处理,确定线激光条纹图像间的偏移距离,从而获得标准物体高度与激光条纹图像偏移量的像素比值,该比值可以用来计算实际物体的高度。另外,利用三自由度机械手,对测量的探针离细胞载玻片的距离进行验证,获得激光三角测量法的误差值。实验结果表明,在细胞注射中,利用激光三角测量法获得注射针的深度信息是可行的。Only two dimensions information of injection needle could be captured by CCD in microscope image,and the lack of the depth information through the optical axis of microscope system would result in the failure of cell injection.A new way called laser triangulation to exract depth information of the injection needle and the slide glass was presented.The measuring principle was calibrating the projection angle of laser,θ was callibrated by the remotion of nano platform,then ascertain the displacement of laser stripe,S by image processing,The height of actual objects will be decided by S· tgθ.In addition,the error of laser triangulation is demonstrated to be about from 5 to 10 μm by calibration using a 3-DOF manipulators.The result indicates that it is feasible to measure the depth information of injection needle by laser triangulation with the required precision in cell injection

    献血者におけるHBs抗原保有状況の検討

    Get PDF
    Article信州医学雑誌 35(3): 285-290(1987)journal articl

    改良分子信标-双重实时荧光PCR快速检测SARS病毒

    Get PDF
    目的建立改良分子信标-双重实时荧光PCR检测SARS病毒的方法,用于SARS的早期诊断和动物溯源。方法利用改良分子信标技术、装甲RNA和双片段双色荧光技术,根据GenBank公布的SARS病毒聚合酶基因1b的阅读开放框架结构的保守序列,自行设计一对引物和探针,以部分临床标本的酶联吸附实验结果和传统细胞培养方法作为对照,建立分子信标检测SARS病毒的方法。对368份临床标本(咽漱液、血液、粪便、尿液)、52份细胞培养液和50份动物标本进行荧光PCR扩增。结果分子信标检测SARS病毒的方法灵敏度为10~100个拷贝ml,与流感病毒等呼吸道病毒无交叉反应。分子信标检测368份临床标本,20份阳性。其中确诊病例阳性率为21.27%(1047),确诊病例的咽漱液阳性率为43.48%,还分别从粪便和血清中检测到SARS病毒。52份细胞培养液,29份阳性,阳性率为55.77%。50份动物标本,23份阳性,阳性率为46%。结论改良分子信标-双重实时荧光PCR检测SARS病毒方法灵敏度高、特异性强,可用于SARS的临床早期诊断和动物溯源

    A Functional Study of Phosphorylation of Small Hepatitis Delta Antigen on Viral Antigenomic RNA Replication

    No full text
    D型肝炎是最簡單的RNA病毒,它可以透過相當獨特的方式進行複製。當病毒進入細胞,病毒本身會先合成小型抗原,並利用細胞內的RNA複製酶進行基因體增殖。過去研究已發現,小型抗原的後轉譯修飾(例如磷酸化、乙醯化與甲基化)可以引導病毒成功完成各階段的生活史,其中小型抗原Ser 177的磷酸化對於病毒反向基因體的複製是相當重要的。目前普遍認為執行D型肝炎病毒反向基因體的RNA複製酶為RNA polymerase II,而且Ser 177在小型抗原與RNA polymerase II之結合能力上可能扮演著舉足輕重的角色,本論文便針對此論點加以進行探討。結果發現,小型抗原在Ser 177進行去磷酸化後與低磷酸化之IIA型RNA polymerase II有較佳的結合力,反觀磷酸化的小型抗原卻與高磷酸化之IIO型RNA polymerase II有較佳的結合力。RNA polymerase II在細胞中合成RNA時,通常會利用磷酸化與否來調控轉錄的各個時期,一般在initiation時期RNA polymerase II會以IIA型態結合在DNA模板的起始點,到了elongation時期則會被細胞中的kinase大量磷酸化而呈現IIO型態,尤其是在其C端Ser 2和Ser 5的位置上。更進一步探討小型抗原磷酸化在病毒反向基因體複製上可能扮演的角色,結果發現Ser 177磷酸化之小型抗原通常會和Ser 2和Ser 5同時被磷酸化的IIO型RNA polymerase II結合,而且kinase抑制劑(DRB)不但會阻斷磷酸化之小型抗原與IIO型RNA polymerase II結合,更會抑制病毒反向基因體之複製。由此結果推斷,Ser 177之磷酸化可能會調控小型抗原與不同型態的RNA polymerase II結合,使RNA polymerase II在進行病毒反向基因體複製時,得以由initiation時期進入elongation時期。然而,除了病毒反向基因體複製酶RNA polymerase II之外,小型抗原是否還可以透過磷酸化來調控與其他細胞內分子的結合力,進而影響病毒反向基因體之複製,則是未來仍需繼續探究的方向。Hepatitis delta virus (HDV) is the simplest RNA virus that employs a unique strategy for viral replication. Once the virus enters the cells, it uses cellular RNA polymerases and one viral protein, small hepatitis delta antigen (SHDAg), for viral RNA replication. Recent studies have revealed that posttranslational modifications (e.g., phosphorylation, acetylation, and methylation) of SHDAg are conducting the essential functions at successive stages of the HDV life cycle. Phosphorylation of SHDAg at Ser177 is required for HDV replication from antigenomic to genomic RNA, and this residue is crucial for interaction with RNA polymerase II (RNAP II), the enzyme assumed to be responsible for antigenomic RNA replication. This study demonstrated that SHDAg dephosphorylated at Ser177 interacted preferentially with hypophosphorylated RNAP II (RNAP IIA), which generally binds at the transcription initiation sites. In contrast, the Ser177-phosphorylated counterpart (pSer177-SHDAg) exhibited preferential binding to hyperphosphorylated RNAP II (RNAP IIO). In addition, RNAP IIO associated with pSer177-SHDAg was hyperphosphorylated at both the Ser2 and Ser5 residues of its carboxyl-terminal domain (CTD), which is a hallmark of the transcription elongation isoform. Moreover, the RNAP II CTD kinase inhibitor 5,6-dichloro-1-β-D-ribofuranosyl- benzimidazole (DRB) not only blocked the interaction between pSer177-SHDAg and RNAP IIO, but also inhibited HDV antigenomic replication. Our results suggest that the phosphorylation of SHDAg at Ser177 shifted its affinity toward the RNAP IIO isoform and thus may be a switch for HDV antigenome replication, from the initiation to the elongation stage. Except for RNAP II, the study of whether SHDAg interacts with some unknown factors essential for viral replication through a phosphorylation-dependent manner is ongoing
    corecore