70 research outputs found

    有关加速寿命模型的几个新结论

    Get PDF
    建立了 DRHR,NBUFR 和 NBUFRA 这3个年龄性质在加速寿命模型中封闭的充分条件.通过研究加速后的寿命和被加速寿命之间的随机比较,讨论了加速寿命模型中的加速因子对加速效果的影响.国家自然科学基金(10201010);兰州大学青年行动基金

    DRHR年龄性质封闭性的注记

    Get PDF
    证明了递减反向失效率(DRHR)性质关于卷积运算封闭,同时证明了该性质在累积发生率是凹的非齐次泊松冲击模型中也封闭.国家自然科学基金资助项目(10201010

    多目标多测度数据空间抽样方法

    Get PDF
    社会问卷调查往往需要针对多目标测度不同类型的数据,而传统的抽样方法主要针对单目标对象,且数据类型为数值型数据。本研究以厦门岛出行调查为例,调查问卷包含了住区特征、居民社会经济状况、就业情况、出行方式、出行目的与时间等方面的指标,提出了以变异度模型为主的新方法。以厦门岛住区居民出行所带来的能耗问题收集的少量先验问卷信息以及历史数据为基础,通过模型表征测度不同类型变量的空间变异性,将其作为空间分层的依据从而完成抽样布点方案,评价精度通过抽样方差进行。结果表明:(1)综合多种因素分层可以灵活地解决调查中涉及类别数据以及数值型数据的问题,将影响抽样问题的各类型因素体现到样点空间布点方案中,扩大三明治空间抽样的应用范围;(2)三明治空间抽样各层样点的分布以及容量受层变异度值(相当于方差)的影响,但其样本容量并不是简单随着区域的层变异度值的增大而增大,空间抽样样本容量同时受到多个因素的影响,其地理空间的大小也是其中一个影响因素;(3)变异度模型成功地量化了各种类型数据,通过少量的预调查得到更详细的抽样方案,其抽样精度为0.0002,样本容量35,满足了问卷调查的目标需求并将抽样样本容量控制在合理的范围之内。国家自然科学基金项目(41671444)~

    面向城市可持续发展的自然解决途径(NBSs)研究进展

    Get PDF
    自然解决途径(NBSs)是近几年生态学应用研究的热点,其理念是综合考虑经济、环境和社会效益,引入自然生态系统服务功能用来修复、恢复甚至提升城市生态基础设施水平,进而解决城市面临的可持续发展挑战。自然解决途径的提出为生态设计注入了新鲜的血液,提供了新的视野和技术方法。基于VOSviewer文献计量分析软件对城市自然解决途径研究的热点关键词、主要研究国家、机构以及全球分布进行了综合分析。结果发现:(1)2015年至2018年有关城市NBSs的研究论文逐渐增多,覆盖6大洲(欧洲、北美洲、亚洲、南美洲、大洋洲、非洲),多数案例是对已有实施工程中采用的可以归纳为自然解决途径的某些方法或者经验的总结凝练;(2)与城市NBSs相关研究热点从高到低主要涉及生态系统服务、绿色基础设施、气候变化、人群健康与福祉;(3)城市自然解决途径研究的主要力量主要聚集在欧洲,目前中国对于NBSs研究仍处于初期起步阶段。将有助于促进自然解决途径研究及实践在中国的发展,同时为城市生态设计和可持续发展提供新视野和新技术。国家自然科学基金项目(41771573)国家重点研发计划(2016YFC0502702

    Genomic Insights into the Formation of Human Populations in East Asia

    Get PDF
    厦门大学人类学研究所、厦门大学生命科学学院细胞应激生物学国家重点实验室王传超教授课题组与哈佛医学院David Reich教授团队合作,联合全球43个单位的85位共同作者组成的国际合作团队通过古DNA精细解析东亚人群形成历史。研究人员利用古DNA数据检验了东亚地区农业和语言共扩散理论,综合考古学、语言学等证据,该研究系统性地重构了东亚人群的形成、迁徙和混合历史。这是目前国内开展的东亚地区最大规模的考古基因组学研究,此次所报道的东亚地区古人基因组样本量是以往国内研究机构所发表的样本量总和的两倍,改变了东亚地区尤其是中国境内考古基因组学研究长期滞后的局面。 该研究是由王传超教授团队与哈佛医学院(David Reich教授)、德国马普人类历史科学研究所(Johannes Krause教授)、复旦大学现代人类学教育部重点实验室(李辉教授和金力院士)、维也纳大学进化人类学系(Ron Pinhasi副教授)、南洋理工大学人文学院(Hui-Yuan Yeh助理教授)、俄罗斯远东联邦大学科学博物馆(Alexander N Popov研究员)、西安交通大学(张虎勤教授)、蒙古国国家博物馆研究中心、乌兰巴托国立大学考古系、华盛顿大学人类学系、台湾成功大学考古所、加州大学人类学系等全球43个单位的85位共同作者组成的国际合作团队联合完成的。厦门大学人类学研究所、厦门大学生命科学学院细胞应激生物学国家重点实验室为论文第一完成单位。厦门大学人类学研究所韦兰海副教授、胡荣助理教授、郭健新博士后、何光林博士后和杨晓敏硕士参与了研究工作。The deep population history of East Asia remains poorly understood due to a lack of ancient DNA data and sparse sampling of present-day people1,2. We report genome-wide data from 166 East Asians dating to 6000 BCE-1000 CE and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan plateau are linked by a deeply-splitting lineage likely reflecting a Late Pleistocene coastal migration. We follow Holocene expansions from four regions. First, hunter-gatherers of Mongolia and the Amur River Basin have ancestry shared by Mongolic and Tungusic language speakers but do not carry West Liao River farmer ancestry contradicting theories that their expansion spread these proto-languages. Second, Yellow River Basin farmers at ~3000 BCE likely spread Sino-Tibetan languages as their ancestry dispersed both to Tibet where it forms up ~84% to some groups and to the Central Plain where it contributed ~59-84% to Han Chinese. Third, people from Taiwan ~1300 BCE to 800 CE derived ~75% ancestry from a lineage also common in modern Austronesian, Tai-Kadai and Austroasiatic speakers likely deriving from Yangtze River Valley farmers; ancient Taiwan people also derived ~25% ancestry from a northern lineage related to but different from Yellow River farmers implying an additional north-to-south expansion. Fourth, Yamnaya Steppe pastoralist ancestry arrived in western Mongolia after ~3000 BCE but was displaced by previously established lineages even while it persisted in western China as expected if it spread the ancestor of Tocharian Indo-European languages. Two later gene flows affected western Mongolia: after ~2000 BCE migrants with Yamnaya and European farmer ancestry, and episodic impacts of later groups with ancestry from Turan.We thank David Anthony, Ofer Bar-Yosef, Katherine Brunson, Rowan Flad, Pavel Flegontov,Qiaomei Fu, Wolfgang Haak, Iosif Lazaridis, Mark Lipson, Iain Mathieson, Richard Meadow,Inigo Olalde, Nick Patterson, Pontus Skoglund, Dan Xu, and the four reviewers for valuable comments. We thank Naruya Saitou and the Asian DNA Repository Consortium for sharing genotype data from present-day Japanese groups. We thank Toyohiro Nishimoto and Takashi Fujisawa from the Rebun Town Board of Education for sharing the Funadomari Jomon samples, and Hideyo Tanaka and Watru Nagahara from the Archeological Center of Chiba City who are excavators of the Rokutsu Jomon site. The excavations at Boisman-2 site (Boisman culture), the Pospelovo-1 site (Yankovsky culture), and the Roshino-4 site (Heishui Mohe culture) were funded by the Far Eastern Federal University and the Institute of History,Archaeology and Ethnology Far Eastern Branch of the Russian Academy of Sciences; research on Pospelovo-1 is funded by RFBR project number 18-09-40101. C.C.W was funded by the Max Planck Society, the National Natural Science Foundation of China (NSFC 31801040), the Nanqiang Outstanding Young Talents Program of Xiamen University (X2123302), the Major project of National Social Science Foundation of China (20&ZD248), a European Research Council (ERC) grant to Dan Xu (ERC-2019-ADG-883700-TRAM) and Fundamental Research Funds for the Central Universities (ZK1144). O.B. and Y.B. were funded by Russian Scientific Foundation grant 17-14-01345. H.M. was supported by the grant JSPS 16H02527. M.R. and C.C.W received funding from the ERC under the European Union’s Horizon 2020 research and innovation program (grant No 646612) to M.R. The research of C.S. is supported 30 by the Calleva Foundation and the Human Origins Research Fund. H.L was funded NSFC (91731303, 31671297), B&R International Joint Laboratory of Eurasian Anthropology (18490750300). J.K. was funded by DFG grant KR 4015/1-1, the Baden Württemberg Foundation, and the Max Planck Institute. Accelerator Mass Spectrometry radiocarbon dating work was supported by the National Science Foundation (NSF) (BCS-1460369) to D.J.K. and B.J.C. D.R. was funded by NSF grant BCS-1032255, NIH (NIGMS) grant GM100233, the Paul M. Allen Frontiers Group, John Templeton Foundation grant 61220, a gift from Jean-Francois Clin, and the Howard Hughes Medical Institute. 该研究得到了国家自然科学基金“中国东南各族群的遗传混合”、国家社科基金重大项目“多学科视角下的南岛语族的起源和形成研究”、厦门大学南强青年拔尖人才支持计划A类、中央高校基本科研业务费等资助

    Study on The Lowest Ecological Water Level And The Law of Water Demand of Swamp Reed in Bosten Lake

    No full text
    水是人类各项经济活动的命脉,是人类生活和社会经济发展不可代替的重要资源,而湖泊是水资源的重要组成部分,由于自然和人为原因的影响,近些年来由于不合理的利用导致了湖泊水位下降,出现了湖泊萎缩、水质恶化、湖泊生态系统退化等问题,引起社会广泛关注,迫切需要研究湖泊生态需水以协调人类与湖泊的关系。生态水位和植被需水都是湖泊生态需水的重要组成部分,因此研究湖泊最低生态水位和植被需水规律具有重要意义。本文根据博斯腾湖的具体情况对博斯腾湖的最低生态水位和沼泽芦苇的需水规律进行了研究。本文的主要研究成果和特色之处主要归纳为: (1) 提出了湖泊最低生态水位的计算方法,认为以湖泊任何单个指标计算都是以该指标为侧重点的,针对性很强,但不能综合考虑,而且不同计算方法所得的计算结果也不相同,所以提出湖泊最低生态水位的计算方法综合指标法,该方法综合考虑了湖泊的各项指标,指标的选取可根据湖泊特点来选取,根据实际情况确定权重。 (2) 根据博斯腾湖具体情况选取天然水位资料、湖泊形态和芦苇3种指标为依据分别计算博斯腾湖的最低生态水位,计算结果分别为1047.06m,1047.41m和1047.20m,然后通过综合分析以上这3种指标所占权重,进行加权计算,最终确定博斯腾湖最低生态水位为1047.16 m,通过分析表明1047.16 m作为博斯腾湖最低生态水位是合理的,综合指标法作为湖泊最低生态水位的计算方法切实可行。 (3) 对博斯腾湖芦苇的需水规律进行了实地观测,得出博斯腾湖芦苇7-9月的蒸散量,计算出7、8、9月的植物修正系数分别为:1.5,1.43,1.06,7-9月平均值为1.33,同时根据Penman-Monteith 公式算出7、8、9月月植物系数,分别为:1.60,1.61,1.46,7-9月的平均值为1.56。Water is economic arteries in all kinds of activities, water resources is important and irreplaceable resources in mankind living and in the economic and social development. The lake is a important components of water recourse. People unilaterally emphasize the exploitation of lakes and ignore the frangibility of the ecosystems. A large quantity of unreasonable exploitation activities have emerged, such as land reclamation surrounding lakes, serious loss of the vegetation, discharge of the water from industry and agriculture, and so on. It caused attention extensively by society, and need to study ecological water demand urgently, to moderate mankind's relationship with lake. The lowest ecological water level and the law of water demand of swampy reed is important constituent in ecological water demand in lake. This paper study on lowest ecological water level and the law of water demand of swampy reed according to the circs of Bosten. This paper have the main results as follows: (1) This paper put forward the composite index method to calculate the lowest ecological water level, the methods to calculate the lowest ecological level of lake according to one index or target, be short of integration, and the results are different for different methods, and the final result was sure very difficult. The composite index method considerate each target, the index are selected according to the circs. (2) According to the circs of Bosten select 3ndex, that is natural water level date, the lake morphology, reed to calculate the lowest ecological level. The results are 1047.06m, 1047.41m, 1047.20m. According to every factor contribution to the lowest ecological level, the weighting coefficient of every factor was considered. The final result show that it is reasonable that the value 1047.16m as the lowest ecological water level, and the composite index method is feasible. (3) The law of water demand of swampy reed is measured by experiment, and the evapotranspiration of reeds is getten, the value of ratio between evapotranspiration of reed and water evaporation from July to Soptember, the results are1.5, 1.43 and 1.06, the average of value is 1.33, and calculate the plant coefficient according to Penman-Monteith function form July to Soptember, the results are 1.60, 1.61 and 1.46, the average of value is 1.56

    湖泊最小生态需水探讨

    No full text
    由于人类活动的加剧以及全球气候的变化,湖泊出现了萎缩、水位下降、水质污染等问题,确定和保证湖泊生态系统必须的最小生态水量是淡水资源科学配置和永续利用的保证,本文根据水量平衡原理对湖泊最小生态需水的概念、模型、计算方法进行了探讨,并对模型的各参数,最低生态水位、降水量、蒸发量、地下水交换量、出湖水量进行了分析和讨论

    开都河最小生态径流计算

    No full text
    选用了7Q 10法、多年最小月平均流量法、T ennan t法3种方法计算了开都河大山口、焉耆、宝浪苏木东支和宝浪苏木西支4个断面的最小生态径流,计算结果表明这3种计算方法的计算结果并不相同。通过对计算方法和结果的分析,认为T ennan t法的计算结果较合理,最终结果选取T ennan t法的计算结果

    塔里木河流域白杨农田防护林蒸散量估算模型

    No full text
    以水面蒸发量为基础,利用多年的白杨农田防护林试验资料,建立了塔里木河流域白杨农田防护林蒸散量的两种估算模型,并利用白杨林实际蒸散量的测量值,分别对两种模型进行了验证。结果表明,从总体上来说,模型(Ⅰ)计算精度较高,但两种模型的相对误差都不是很大,都可以作为计算塔里木河流域白杨农田防护林蒸散量的方法而使用,但要根据具体情况加以应用
    corecore