9 research outputs found

    纳米磁性粉末成形新工艺──爆炸烧结

    No full text
    纳米磁性材料是发展方向之一。本文就纳米磁性粉末采用爆炸烧结新工艺的可行性进行了全面分析和实验验证,得到了肯定的结论

    Experimental Study on Explosion Dispersal of Thermobaric Explosive

    No full text
    采用高速运动分析系统观察了高能炸药、含铝炸药和温压炸药爆炸产物抛撒的过程;分析比较了三种炸药的爆炸产物抛撒运动及后燃特点,得到了温压炸药具有爆炸和后燃二个过程,爆炸场范围大,温度高,后燃持续时间长;高能炸药与温压炸药相比爆炸场范围小,温度低,几乎没有后燃过程;含铝炸药介于温压炸药和高能炸药之间

    Dispersal process of explosion production of thermobaric explosive

    No full text
    采用高速运动分析系统观察了高能炸药、含铝炸药和温压炸药爆炸产物抛撒的过程;比较了这3种炸药的爆炸产物抛撒运动及后燃特点,通过比较直观地观察到温压炸药爆炸和后燃2个过程,以及后燃火球的成长历程,根据实验结果确定了温压炸药爆炸产物抛撒半径随时同变化的数学表达式

    高能、含铝和温压炸药爆炸抛撒实验研究

    No full text
    采用高速运动分析系统观察了高能炸药、含铝炸药和温压炸药爆炸产物抛撒的过程;分析BLOT三种炸药的爆炸产物抛撒运动及后燃特点,得到了温压炸药具有爆炸和后燃二个过程,爆炸场范围大,温度高,后燃持续时间长;高能炸药与温压炸药相比爆炸场范围小,温度低,几乎没有后燃过程;含铝炸药介于温压炸药和高能炸药之间

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore