7 research outputs found

    产甲烷菌固定化新方法及其甲烷化特性

    No full text
    为了克服以PVA为包埋介质对甲烷八叠球菌进行固定化存在的缺点,采用吸附和包埋结合法对甲八叠球菌进行固定化,并用固定化甲烷八叠球菌处理人工废水和豆制品废水,对其特性进行研究。用人工废水运行的结果表明,最高容积负荷为14.7kgCOD/m^3·d,最高COD去除率为94.3%,最低水滞留期为16.4h,甲烷含量为65%-73%。用豆制品废水运行的结果表明,最高COD负荷17.6kgCOD/m^3·d,平均容积负荷8.2kgCOD/m^3·d,最短水滞留期13.7h。最高产气率7L/d·L平均产气率固定化为非固定化的15.2倍,最高COD去除率达到了87.0%,运行期间固定化介质不上浮、不膨胀,具有很好的传质和脱气性能,较好地解决了包埋法固定化中存在的问题

    生物质气化洗焦废水的混凝吸附对微生物降解的影响

    No full text
    为了提高生物质气化洗焦废水的处理效果,利用普通混凝剂、电厂粉煤灰和颗粒活性炭(GAC)对生物质气化洗焦废水进行混凝沉降试验和静态吸附试验。经混凝沉淀、吸附后的生物质气化洗焦废水接种微生物菌种进行微生物降解试验。混凝剂明矾和Al2(SO4)3对生物质气化洗焦废水的浊度和悬浮物可有效去除,但COD去除率较低,色度去除率极低;电厂粉煤灰对生物质气化洗焦废水的浊度、色度、COD去除率很低,电厂粉煤灰与明矾或Al2(SO4)3共用使用可明显提高对浊度、COD的去除率,且混凝沉降速度明显提高,絮凝物紧密稳定。经混凝吸附处理的生物质气化洗焦废水,微生物降解速度和降解率均显著提高

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore