2 research outputs found

    能量平衡融雪模型在西天山的应用试验/Experiment on the Application of the Energy Balance Snowmelt Model on Western Tianshan Mountains[J]

    No full text
    为了验证能量平衡融雪模型在巩乃斯流域的适用性,在天山积雪雪崩研究站开展了模型的应用试验.设置了3个融雪水收集样点,模拟值分别与1号、2号和3号样点观测的日融雪量进行对比,结果表明,1号融雪水收集点的拟合优度系数R2=0.86,体积差Dv=-5.9%;2号收集点R2=0.92,Dv=-3.2%;3号收集点,R2=0.91,Dv=- 10.7%,模拟值总量偏高于实测值.较高的R2和较低的Dv值,表明模型达到了比较好的模拟效果,也显示该模型在巩乃斯河流域具有良好的应用前景

    Prediction of Energy Resolution in the JUNO Experiment

    Get PDF
    International audienceThis paper presents the energy resolution study in the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3% at 1 MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components of the JUNO detector. Various factors affecting the detection of inverse beta decay signals have an impact on the energy resolution, extending beyond the statistical fluctuations of the detected number of photons, such as the properties of liquid scintillator, performance of photomultiplier tubes, and the energy reconstruction algorithm. To account for these effects, a full JUNO simulation and reconstruction approach is employed. This enables the modeling of all relevant effects and the evaluation of associated inputs to accurately estimate the energy resolution. The study reveals an energy resolution of 2.95% at 1 MeV. Furthermore, the study assesses the contribution of major effects to the overall energy resolution budget. This analysis serves as a reference for interpreting future measurements of energy resolution during JUNO data taking. Moreover, it provides a guideline in comprehending the energy resolution characteristics of liquid scintillator-based detectors
    corecore