121 research outputs found

    Effect of additional magnesium on mechanical and high-cycle fatigue properties of 6061–T6 alloy

    Get PDF
    The effect of additional solute magnesium (Mg) on mechanical and high-cycle-fatigue properties of 6061-T6 aluminum alloy is investigated in detail. By adding 0.5% and 0.8% Mg to the 6061-T6 alloy with a normal stoichiometric Mg2Si composition (base alloy), the alloy exhibits eminent strain-aging characteristics demonstrated by the emergence of serrated flow, the negative strain-rate-sensitivity and relatively weakened temperature dependency of flow stress. The Mg-added new alloy also shows higher work-hardening rate than the base alloy particularly at initial flow regime and at lower strain rate. The S-N curve of the new alloy shows a clear fatigue limit which is absent in the base alloy. The fatigue limit of the new alloy is shown to be controlled by the threshold against small crack growth. Moreover, the new alloy clearly exhibits a coaxing phenomenon (time-dependent strengthening) which is absent in the base alloy. The coaxing effect is attributed to the existence of a small quasi-non-propagating crack whose growth resistance gradually increases during stress amplitude step-ups.This study was financially supported in part by the Kansai University Grant-in-Aid for progress ofresearch in graduate course (2012) and also by the Kansai University Expenditures for Support ofTraining Young Scholars (2013)

    一维平推流反应器动态模型的新型求解方法

    Get PDF
    目前对一维平推流反应器动态模型求解时,常将反应体系中气体的体积流量假设为恒定参数。由于实际过程中气体的体积流量会随着温度等相关参数的改变而不断变化,该假设会对模拟结果带来一定的误差。本文针对此问题提出一种新的求解方法:首先通过有限差分法将动态模型中的空间和时间变量均离散化得到相应的代数方程组,再结合气体状态方程,推导出浓度关于气体摩尔流量和温度的函数,然后联立方程组进行求解;此方法有效克服了动态模拟中由于气体的体积流量变化而导致模型方程难以求解的困难。将所提出的方法应用于丙酮气相裂解生成乙烯酮过程的动态模拟,并将所得到的模拟结果与线上法动态模拟的结果进行比较,结果表明所提出的求解方法得到的模拟结果更加精确。国家自然科学基金面上项目(21576228

    Reflection on a Collaborative Project between Medical Professionals and Cultural Anthropologists at the University of Tsukuba

    Get PDF
    departmental bulletin pape
    corecore