5 research outputs found

    晋陕蒙接壤区露天矿层状土壤水分入渗特征与模拟

    No full text
    分析4种不同结构层状土水分入渗规律,为晋陕蒙接壤区露天矿排土场建设筛选合适的 层状土体。设置沙土、砒砂岩、黄绵土和红黏土4种均质土柱以及黄-沙-红、黄-红-沙、沙-黄-砒、 黄-砒-沙4种层状土,借助室内土柱自动观测系统测定矿区土壤的入渗过程,通过入渗速率、累积入渗 量、湿润锋运移、剖面含水量变化分析不同结构层状土入渗特征,结合晋陕蒙接壤区自然条件,评价 适合排土场建设的层状土体。结果表明:黄-沙-红、沙-黄-砒型层状土在短时间内能储存大量水分, 且第三层土体阻水作用强,黄-沙-红型层状土下层红黏土阻水效果尤其显著,这两种层状土体是矿区 排土场较理想的新土体结构。但是,黄-红-沙型层状土入渗速率慢,在强降雨条件下不能使水分迅速 入渗。黄-砒-沙型层状土湿润锋到达第三层土体后运移速率仍很快,阻水效果差,水分容易渗漏到深 层土壤,这两种层状土结构不宜应用到晋陕蒙矿区排土场建设中。最后探讨了H Y D R U S-1D 对入渗过 程的模拟,利用均质土剖面含水量反演土壤水力参数模拟4种层状土的入渗过程,得到较好的模拟效 果。本文对4种层状土入渗特征的测定与模拟,对于指导露天矿区排土场新土体构筑有一定的理论和现 实意义。</p

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore