6 research outputs found

    A representation of the configurations and evolution of metamorphic mechanisms

    No full text
    Metamorphic mechanisms are members of the class of mechanisms that are able to change their configurations sequentially to meet different requirements. The paper introduces a comprehensive symbolic matrix representation for characterizing the topology of one of these mechanisms in a single configuration using general information concerning links and joints. Furthermore, a matrix representation of an original metamorphic mechanism that has the ability to evolve is proposed by uniting the matrices representing all of the mechanism&#39;s possible configurations. The representation of metamorphic kinematic joints is developed in accordance with the variation laws of these mechanisms. By introducing the joint variation matrices derived from generalized operations on the related symbolic adjacency matrices, evolutionary relationships between mechanisms in adjacent configurations and the original metmaorphic mechanism are made distinctly. Examples are provided to demonstrate the validation of the method.</p

    A representation of the configurations and evolution of metamorphic mechanisms

    No full text
    Metamorphic mechanisms are members of the class of mechanisms that are able to change their configurations sequentially to meet different requirements. The paper introduces a comprehensive symbolic matrix representation for characterizing the topology of one of these mechanisms in a single configuration using general information concerning links and joints. Furthermore, a matrix representation of an original metamorphic mechanism that has the ability to evolve is proposed by uniting the matrices representing all of the mechanism&#39;s possible configurations. The representation of metamorphic kinematic joints is developed in accordance with the variation laws of these mechanisms. By introducing the joint variation matrices derived from generalized operations on the related symbolic adjacency matrices, evolutionary relationships between mechanisms in adjacent configurations and the original metmaorphic mechanism are made distinctly. Examples are provided to demonstrate the validation of the method.</p

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore