67 research outputs found

    Characteristics, Processes and Classification

    Get PDF
    Π£ ΠΎΠ²ΠΎΠΌ Ρ€Π°Π΄Ρƒ ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½ΠΈ су Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° Π’Π΅Π»ΠΈΠΊΠΎΠ³ ΠΏΠΎΡ™Π°. Π’Π΅Π»ΠΈΠΊΠΎ ΠŸΠΎΡ™Π΅ прСдставља подноТјС ΠΏΠ»Π°Π½ΠΈΠ½Π΅ Π’ΡƒΠΊΠ°Π½. На потСсу Π’Π΅Π»ΠΈΠΊΠΎΠ³ ΠŸΠΎΡ™Π° сС дСшава ΠΈΠ·Ρ€Π°Π·ΠΈΡ‚Π° ΠΏΡ€ΠΎΠΌΠ΅Π½Π° Ρƒ Π³Π΅ΠΎΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΡˆΠΊΠΈΠΌ особинама Ρ‚Π΅Ρ€Π΅Π½Π° Ρ˜Π΅Ρ€ Π΄ΠΎΠ»Π°Π·ΠΈ Π΄ΠΎ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° ΠΊΠΎΠ»ΡƒΠ²ΠΈΡ˜Π°Π»Π½ΠΎΠ³ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»Π° са вишСг Ρ‚Π΅Ρ€Π΅Π½Π° ΠΈ старих Π°Π»ΡƒΠ²ΠΈΡ˜Π°Π»Π½ΠΈΡ… наноса Ρ€Π΅ΠΊΠ΅ МлавС. Π—Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° Π’Π΅Π»ΠΈΠΊΠΎΠ³ ΠΏΠΎΡ™Π° су ΠΊΠ°Ρ€Ρ‚ΠΈΡ€Π°Π½Π° ΠΊΡ€Π°Ρ˜Π΅ΠΌ пСдСсСтих Π³ΠΎΠ΄ΠΈΠ½Π° ΠΏΡ€ΠΎΡˆΠ»ΠΎΠ³ Π²Π΅ΠΊΠ°, Π°Π»ΠΈ нису Π΄Π΅Ρ‚Π°Ρ™Π½ΠΎ истраТивана. Π¦ΠΈΡ™ ΠΎΠ²ΠΎΠ³Π° Ρ€Π°Π΄Π° јС Π΄Π° сС испита Π·Π΅ΠΌΡ™ΠΈΡˆΠ½ΠΈ ΠΏΠΎΠΊΡ€ΠΈΠ²Π°Ρ‡ Π’Π΅Π»ΠΈΠΊΠΎΠ³ ΠΏΠΎΡ™Π°, Ρ‚Π΅ Π΄Π° сС Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π΅ ΠΊΠ»Π°ΡΠΈΡ„ΠΈΠΊΡƒΡ˜Ρƒ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ Π΄ΠΎΠΌΠ°Ρ›Π΅Π³ ΠΈ WRB класификационог систСма, ΠΊΠ°ΠΎ ΠΈ Π΄Π° сС ΠΈΠ·Ρ€Π°Π΄ΠΈ Π±Π°Π·Π° ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° ΠΎ Π·Π΅ΠΌΡ™ΠΈΡˆΠ½ΠΈΠΌ ΡΠ²ΠΎΡ˜ΡΡ‚Π²ΠΈΠΌΠ° са пСдолошком ΠΊΠ°Ρ€Ρ‚ΠΎΠΌ ΠΏΠΎΠ΄Ρ€ΡƒΡ‡Ρ˜Π°. Π£Π·ΠΈΠΌΠ°Ρ˜ΡƒΡ›ΠΈ Ρƒ ΠΎΠ±Π·ΠΈΡ€ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Ρ€Π΅Ρ™Π΅Ρ„Π° ΠΊΠ°ΠΎ Π΄ΠΎΠΌΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ пСдогСнСтског Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, Ρ†Π΅ΠΎ простор јС испитан ΠΊΡ€ΠΎΠ· ΠΏΡ€Π°Π²ΠΈΠ»Π½Ρƒ ΠΌΡ€Π΅ΠΆΡƒ ΠΎΠ΄ 42 ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°. На свим ΠΏΡ€ΠΎΡ„ΠΈΠ»ΠΈΠΌΠ° су испитивани Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΈ ΡΠΏΠΎΡ™Π°ΡˆΡšΠ΅ ΠΈ ΡƒΠ½ΡƒΡ‚Ρ€Π°ΡˆΡšΠ΅ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅, Ρ‚Π΅ основна Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΠ°, Π²ΠΎΠ΄Π½ΠΎ-Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΠ°, Ρ…Π΅ΠΌΠΈΡ˜ΡΠΊΠ° ΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΡˆΠΊΠ° ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°. Од Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΠΈΡ… ΠΈ Π²ΠΎΠ΄Π½ΠΎ-Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΠΈΡ… карактСристика су испитани ΠΌΠ΅Ρ…Π°Π½ΠΈΡ‡ΠΊΠΈ састав, структура Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°, запрСминска ΠΈ спСцифична маса, максимални ΠΈ пољски Π²ΠΎΠ΄Π½ΠΈ ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚, влаТност Π²Π΅Π½ΡƒΡ›Π° ΠΈ Ρ…ΠΈΠ΄Ρ€Π°ΡƒΠ»ΠΈΡ‡ΠΊΠ° проводљивост. Од Ρ…Π΅ΠΌΠΈΡ˜ΡΠΊΠΈΡ… ΡΠ²ΠΎΡ˜ΡΡ‚Π°Π²Π° јС испитан ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ хумуса, CaCO3, ΡƒΠΊΡƒΠΏΠ½ΠΎΠ³ Π°Π·ΠΎΡ‚Π° ΠΈ приступачних ΠΎΠ±Π»ΠΈΠΊΠ° фосфора ΠΈ ΠΊΠ°Π»ΠΈΡ˜ΡƒΠΌΠ°, Ρ‚Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½Π°, Ρ€Π°Π·ΠΌΠ΅Π½Ρ™ΠΈΠ²Π° ΠΈ Ρ…ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΡ‚ΠΈΡ‡ΠΊΠ° кисСлост, ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚ Π·Π° Π°Π΄ΡΠΎΠΏΡ€ΠΏΡ†ΠΈΡ˜Ρƒ ΠΊΠ°Ρ‚Ρ˜ΠΎΠ½Π°, ΠΈ стСпСн засићСности Π±Π°Π·Π°ΠΌΠ°. Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° су ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π΄Π° јС Π·Π΅ΠΌΡ™ΠΈΡˆΠ½ΠΈ ΠΏΠΎΠΊΡ€ΠΈΠ²Π°Ρ‡ Π’Π΅Π»ΠΈΠΊΠΎΠ³ ΠΏΠΎΡ™Π° Ρ…Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½ ΠΈ издвојСнС су слСдСћС систСматскС ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΡ˜Π΅ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°: ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½ΠΈ Ρ‡Π΅Ρ€Π½ΠΎΠ·Π΅ΠΌΠΈ, ΠΈΠ·Π»ΡƒΠΆΠ΅Π½ΠΈ Ρ‡Π΅Ρ€Π½ΠΎΠ·Π΅ΠΌΠΈ, ΠΊΠΎΠ»ΡƒΠ²ΠΈΡ˜Π°Π»Π½ΠΎ-Π°Π»ΡƒΠ²ΠΈΡ˜Π°Π»Π½ΠΎ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π΅, ΠΊΠΎΠ»ΡƒΠ²ΠΈΡ˜Π°Π»Π½ΠΈ калкомСланосоли ΠΈ Π΅ΡƒΡ‚Ρ€ΠΈΡ‡Π½ΠΈ камбисоли. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ΠΎ јС ΠΈ ΡˆΠ΅ΡΡ‚ Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½ΠΈΡ… Π³Ρ€ΡƒΠΏΠ° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° ΠΏΡ€Π΅ΠΌΠ° WRB систСму ΠΊΠ»Π°ΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅. Бтатистичка Π°Π½Π°Π»ΠΈΠ·Π° ΡƒΠΊΠ°Π·ΡƒΡ˜Π΅ Π½Π° Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ Ρ€Π°Π·Π»ΠΈΠΊΠ΅ ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° највишСг ΠΈ најниТСг Ρ‚Π΅Ρ€Π΅Π½Π°...This work presents the results of soil investigations at Great field. In this work are presented the results of soil investigationa Great Field presents foot and toe slopes of Mt. Vukan. The area of Great field is a contact zone between two geomorphologic units where colluvial material from mountain and old alluvial deposits meet. Soils of Great Field were mapped in late fifties but without detailed surveying. This study aims to analyze soils in the area of Great Field, to classify them by means of domestic and international system and to create soil geodatabase and soil map of the study area. Taking into consideration landscape as dominant pedogenic factor within the area, soils are investigated through the regular network of 42 soil profiles. Soil ecto- and endomorphological, physical, hydraulic, chemical and mineralogical characteristics were investigated. Soil physical and soil hydraulic properties analysed include particle size distribution, soil structure, bulk and particle density, maxiumum and field capacity, wilting point and hydraulic conductivity. Chemical properties analyzed include determination of soil organic matter content, CaCO3 content, total nitrogen, available phosphorus and potassium, soil reaction, cation exchange capacity and base saturation. The results of our work have demonstrated that the soil cover in the Great Field is heterogeneous and following taxonomic units are identified: Colluo-alluvial soil, Colluvic Kalkomelanosol, Calcaric Chernozem, Leached Chernozem and Eutric Cambisol. Six referent soils groups according to WRB were identified. Statistical analysis indicates significant differences between the soils at the highest and lowest elevations. Soil geodatabase created in geographic information system has been approved as a remarkable tool for spatial analysis of soil properties through the creation of thematic maps and soil map of the study area..

    The history, activities and future perspectives of the Serbian Soil Science Society

    Get PDF
    The future capacity of soils to support life on Earth is becoming questionable and in such a situation an important attention is given to soil science and land use–soil policy. This paper presents the historical overview, conducted activities and roles of the Yugoslav and Serbian Soil Science Society (SSSS) from its begining to recent days, as well as future plans. The material tackles the development of soil science in Serbia: foundation of the Soil Society, international cooperation, publication of the journal ''Soil and Plant'' and other publishing activities, structural organization of the Society, organization of congresses and symposia, and impact of the Society to overall well being by development of various programmes. It also highlights the coordination, consulting, and supporting role of the Society in preparation of the soil map of Yugoslavia. The role of SSSS today is aimed at the general scientific, cultural and educational development and benefit of the Republic of Serbia. The Society has its bodies, eight (nine) commissions, eleven subcommissions and four working groups. In the coming period, the Society will continue its organizational, publishing, educational, and cooperation activities, but also strive to include soils and soil science among national priorities. The permanent legacy of the Society is the inclusion of soil at the core of policies that support environmental protection and sustainable development in line with new challenges

    Environmental trends in Montenegro: Land degradation neutrality

    Get PDF
    Land degradation neutrality (LDN) is an integral part of the 2030 UN Agenda for Sustainable Development. Montenegro actively works on LDN target setting process. This paper aims to present: (a) the basic principles of LDN concept, (b) global datasets provided by UNCCD, (c) SWOT analysis for the country, and (d) to discuss possible national datasets and further activities related to LDN. LDN Target indicator is measured by means of three sub-indicators: land cover, land productivity and soil organic carbon (SOC), and it could be broaden with national indicators. Country has been provided by UNCCCD with global dataset on three sub-indicators, as well as with watershed boundaries, but is encouraged to utilize their own datasets. ESA land cover data indicate the conversion of 2460 ha of forests into to croplands or shrubs. Land productivity dynamics data indicated that 74300 ha of territory have sort of negative trends in land productivity. SOC at the country level indicates average content of 125.1 t/ha. Ten potential hotspots in the country had reduction of land productivity dynamics caused by wildfires, whereas five hotspots had multiple drivers of land degradation among which fires, agricultural abandonment and urbanization are the most important. Although there is a certain inaccuracy in global datasets, the country decision is to utilize them in defining LDN baseline. The national working group defined four specific voluntary targets: (1) Avoiding, minimizing land degradation, and redirecting land use changes, (2) Increase of land productivity - reduction of soil degradation, (3), Protection of natural ecosystems from wildfires, and (4) Improvement of soil monitoring system. Accordingly, 25 associated measures are defined to achieve LDN up to 2030. They are related to enhancement of LDN baseline in Montenegro, environmental legislations, direct measures to prevent, minimize land degradation and restore degraded land, sustainable agriculture and forestry, land use changes and social

    PEDO–EXCEL: A Simple Excel Tool/Database to Prepare and Elaborate Soil Profile Data

    Get PDF
    Soil investigations in pedology are often made of four different stages: a) preliminary stage, b) on-field soil research, c) laboratory (analytical) research and d) data elaboration. Depending on the aim of soil investigations each of these stages can last for a different amount of time. On-field soil research is the central part of soil surveys. It consists of soil profile excavation, description of soil profiles and collection of soil samples. Experienced soil scientists can vast a lot of time in description of soil ectomorphological and endomorphological properties, whereas un-experienced soil scientists move often fastly over this stage to soil sampling. The description of soil profile is of the essential importance in soil surveys and a huge number of soil information can be collected while describing soil profiles. Soil description is often done manually by filling soil forms, but it is somewhere digitized. It is also a time–consuming job how to prepare those data for the further elaborations, often how to make them digitized. Another important issue in front of the researcher is how to present a large number of soil characteristics and to elaborated data in fast and efficient manner. Therefore, this necessity of being most efficient in soil data elaboration has forced us to prepare a simple Π•xcel based tool to fastly retype and elaborate soil profile data. Pedo–Excel is based on FAO Guideline for soil description. General information, soil formation factors, and soil description headings with the different number of soil characteristics are offered to the users in drop down menues, which are specific for each soil characteristics. The user simply inserts collected data by choosing them from the menues. By this manner, the users can fill the columns for all soil horizons/layers and re-type the data for whole soil profile(s). Soil characteristics are provided with their full names and used abbreviations. Data elaboration in Pedo–Excel starts with the simple choice which of the soil characteristics should be presented in our work, by simple choosing of ’’1’’ (yes) or ’’0’’ (no) into the column next to the characteristic. The result of this choice is an Excel table with chosen soil characteristics. Each soil sheet presents one soil profile with up to ten soil horizons/layers. Almost all soil characteristics presented in FAO Guideline are part of the Pedo–Excel. Pedo–Excel is a simple, user friendly, and time efficient tool for elaboration of huge series of soil profile data collected during soil surveys

    CONCENTRATIONS OF NATURAL RADIONUCLIDES IN SOILS OF EASTERN HERZEGOVINA

    Get PDF
    INTRODUCTION and OBJECTIVES: Soil is one of the most important natural resources. Measurement of natural radioactivity in soil is very important to determine the amount of change of the natural background activity with time as a result of any radioactivity release. Gacko field is a karst field and is virtually the only oasis of arable land in the region studied. Nevertheless, nothing significant has been done in this area over the past decade to protect land resources from damage and permanent destruction. Coal mine and thermal power plant in Gacko field is a very important industrial facility. MATERIAL and METHOD: The content of radionuclides of the soil was examined at Gacko area, slag, ash and mullock dumps in the thermal power plant Gacko and soils of dumps in the process of recultivation. Soil samples were collected in 2010/2019 at more locations in eastern part of the Republic of Srpska. After removing the stones and vegetation, all soil samples for Gamma Spectrometric measurements dried up to 105 0C, sieved, placed in the plastic 500 mL Marinelli beakers and left for four weeks to reach radioactive equilibrium. RESULTS and CONCLUSIONS: The results of gamma emitters spectrometry indicate that the concentrations of natural radionuclides are of the same order of magnitude, as in power plants in other countries. The results point to the necessity of regular monitoring of radioactivity in eastern Herzegovina in order to assess the impact of the technologically increased natural radioactivity.At the same time, the obtained results represent the initial basedata based on which could be predicted level radioactivity since such studies have so far not been carried out in the Republic of Srpska

    Current conditions and future perspectives of grasslands in Serbia

    Get PDF
    Natural grasslands and pastures occupy 5.96% of the country territory. According to European Space Agency, changes in land cover from 2000–2015 indicate decrease in total grassland area of 1765 km2 (30.03%), emphasizing dominant conversion of grasslands to forests. Ongoing depopulation trend, rural to urban migrations, and decrease in livestock population are some of main factors impacting grasslands. This trend favors further naturalization of pastures striving to increase the areas under natural grasslands. Such conversion will contribute to overall change in biodiversity richness, especially in areas with saline soils and high mountain regions with increased level of endemic species. Grasslands play important role in overall sustainability, but their importance it is not properly addressed. Environmental experts should recognize drivers of grasslands degradation and propose appropriate conservation and restoration measures. The priority should be avoidance of grassland degradation that requires good assessment of their current conditions and monitoring of plant, soil, climate conditions and land use activities. Further measures are deduced to sustainable land management practices and smooth human interventions, whereas the aftermost adopted measures should be related to restoration. Grasslands should have more emphasized role in our society and LDN principles should be applied for their preservation

    Classification of Rendzina soils in Serbia according to the WRB system

    Get PDF
    According to soil classification system used in Serbia (Ε koriΔ‡, Δ†iriΔ‡ and Filipovski, 1985) Rendzina is a soil type within the order of automorphic soils and the class of humus-accumulative soils with an Amo-AmoC-C-R profile, which is developed on parent rock containing more than 20% of calcareous material. Rendzinas are divided onto subtypes - according to the parent material: (i) marl, marly limestone and soft limestone, (ii) loess and loess like sediments, (iii) dolomite sand, (iv) moraine; on varieties - according to stadium of evolution: (i) calcareous, (ii) decarbonated, (iii) brunified, (iv) colluvial, and forms - according to texture and coarse fragments content. Throughout the world, the term Rendzina (and Pararendzina) is used to denote soils formed on different calcareous parent material and it generally corresponds with Rendzic Leptosol of the WRB soil classification system. Rendzinas on marl, marly limestone and soft limestone is the most widespread subtype in Serbia, and the aim of this study was to precisely classify it according to the WRB 2015 system. Total of 29 Rendzina soil profiles from different parts of Serbia were studied. Field and laboratory investigations (soil depth, colour, coarse fragments, texture, structure, pH, soil organic carbon, base saturation) were determined using methods recommended by the WRB system (except for base saturation, where BaCl2, pH 8.1, was used instead of NH4OAc, pH 7). According to soil classification system used in Serbia, from total of 21 soil profiles on soft limestone, 16 were calcareous variety (form: 8 loamy, low or medium skeletal and 1 clay, medium skeletal); 13 decarbonated variety (loamy, low skeletal); and 2 colluvial variety (loamy, low skeletal); and 8 profiles on marl of which 7 were calcareous variety (loamy, low or medium skeletal), and 1 profile was decarbonated variety (loamy, low skeletal). According to WRB 2015 system, investigated Rendzinas were classificated to RSG of Leptosols (12 profiles), Regosols (10 profiles) and Phaeozems (7 profiles). Leptosols include Rendzinas with A-R soil profile, where continuous rock (10 profiles on soft limestone and 2 profiles on marl) starting ≀15-25 cm from the soil surface. For calcareous Rendzina variety, combinations of the principal qualifiers were: Rendzic, Rendzic Calcaric, and Skeletic Calcaric. The decarbonated variety matched the diagnostic criteria for the Eutric principal qualifier. The supplementary qualifiers for Leptosols were Loamic or Clayic, Aric and Humic. Renzinas deeper than 25 cm, usually with A-AC-R soil profile, having a mollic diagnostic horizon were classified to RSG of Phaeozems. For calcareous Rendzinas variety, combinations of the principal qualifiers were: Rendzic Calcaric or Rendzic Skeletic Calcaric. The decarbonated Rendzinas variety only matched criteria for the Leptic principal qualifier. Loamic and Aric supplementary qualifiers were added to Phaeozems. RSG of Regosols includes Rendzinas thicker than 25 cm, usually with A-AC-R soil profile, when surface horizon does not match diagnostic criteria of a mollic horizon (in slightly crushed samples a Munsell colour value of β‰₯3 moist, and ≀ 5 dry, and a chroma of β‰₯4 moist). Surface horizons were more than 20 cm deep (except for 2 profiles) and had over 0.6% (1.1-4.6%) soil organic carbon. For calcareous Rendzinas variety combinations of the principal qualifiers were: Leptic Calcaric or Leptic Skeletic Calcaric. For Colluvial Rendzinas variety (all calcareous) combination of the principal qualifiers was: Leptic Colluvic Calcaric. Loamic and Aric and/or Humic supplementary qualifiers were used for Regosols. Soil depth caused the first differentiation between Leptosols and Phaeozems, and soil (moist) colour caused the second differentiation between Phaeozems and Regosols. Somewhat brighter soil colour of Rendzina/Regosols is a result of low soil organic matter content and/or high content of calcaric material in the fine earth

    Water productivity indices of the soybean grown on silty clay soil under sprinkler irrigation

    Get PDF
    The objective of this research was to compare the effects of different irrigation treatments on soybean [Glycine max (L.) Merr.] productivity and water use efficiency on experimental fields of the Maize Research Institute of Zemun Polje(Serbia), in 2007 and 2008. Four irrigation levels were investigated: full irrigation (I100), 65% and 40% of I100 (I65 and I40) and a rain-fed (I0) system. The crop water use efficiency (CWUE, also known as crop water productivity –CWP), irrigation water use efficiency (IWUE) and evapotranspiration water use efficiency (ETWUE) were used to assess the water productivity of each studied treatment. The efficiency of the same treatment differed between the years as it depended on seasonal water availability, weather conditions and their impact on seed yields. Maximum and minimum yields were obtained in the I65 and I0 treatments, averaging 3.41 t ha–1 and 2.26 t ha–1, respectively. Water use efficiency values were influenced by the irrigation levels. In general, CWUE values increased with the increased level of irrigation. In both growing seasons, IWUE and ETWUE decreased with increasing the seasonal water consumption and irrigation depth. On average, treatments I40 and I65 resulted in similar or higher CWUE and ETWUE than I100, in both growing seasons. I65 resulted in the highest IWUE, averaged over the two seasons, while I100 had the lowest IWUE. I65 could be proper for the soybean irrigated in Vojvodina when there is no water shortage and I45 could be used as a good basis for reduced sprinkler irrigation strategy development under water shortage

    Uticaj promene koriΕ‘Δ‡enja zemljiΕ‘ta na hidroloΕ‘ka i hidraulička svojstva livadske crnice: od neporemeΔ‡ene Ε‘ume do paΕ‘njaka

    Get PDF
    Π£Π’ΠžΠ” ΠΈ Π¦Π˜Π‰Π•Π’Π˜: Π₯ΠΈΠ΄Ρ€Π°ΡƒΠ»ΠΈΡ‡ΠΊΠ° ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° (Π₯Π‘Π—) ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡˆΡƒ ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ ΠΈ ΡΠΊΠ»Π°Π΄ΠΈΡˆΡ‚Π΅ΡšΠ΅ Π²ΠΎΠ΄Π΅ ΠΈ Ρ…Ρ€Π°Π½Ρ™ΠΈΠ²ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π° Ρƒ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Ρƒ ΠΈ Π½Π° Ρ‚Π°Ρ˜ Π½Π°Ρ‡ΠΈΠ½ ΡƒΡ‚ΠΈΡ‡Ρƒ Π½Π° ΡˆΠΈΡ€ΠΎΠΊ спСктар Π±ΠΈΠΎΠ³Π΅ΠΎΡ…Π΅ΠΌΠΈΡ˜ΡΠΊΠΈΡ… процСса ΠΈ услуга СкосистСма. Π—Π° ΠΏΠΎΡ‚Ρ€Π΅Π±Π΅ Ρ…ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΡˆΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ°, ΡƒΠ³Π»Π°Π²Π½ΠΎΠΌ сС ΠΊΠ°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΡˆΡƒ ΠΊΠ°ΠΎ константнС врСдности, Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€, засићСна Ρ…ΠΈΠ΄Ρ€Π°ΡƒΠ»ΠΈΡ‡Π° проводљивост (ΠšΡΠ°Ρ‚), ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚ ΠΈΠ½Ρ„ΠΈΠ»Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π΅ ΠΈΠ»ΠΈ пољски Π²ΠΎΠ΄Π½ΠΈ ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚ (ΠŸΠ’Πš). Ипак, Π΄ΠΎΠ±Ρ€ΠΎ јС ΠΏΠΎΠ·Π½Π°Ρ‚ΠΎ Π΄Π° су ΠΌΠ½ΠΎΠ³Π° Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΠ° ΠΈ Ρ…Π΅ΠΌΠΈΡ˜ΡΠΊΠ° ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° ΠΏΡ€ΠΎΠΌΠ΅Π½Ρ™ΠΈΠ²Π° Ρƒ простору ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Ρƒ. ΠœΠΎΠ³ΡƒΡ›ΠΈ Ρ€Π°Π·Π»ΠΎΠ·ΠΈ Π·Π° Ρ‚ΠΎ су биолошка активност Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°, процСси ΠΏΠΎΠ²Π΅Π·Π°Π½ΠΈ са ΠΌΡ€Π°Π·ΠΎΠΌ, ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π²Π΅Ρ‚Ρ€Π° ΠΏΡ€Π΅ΠΊΠΎ ΠΊΠΎΡ€Π΅Π½Π° Π±ΠΈΡ™Π°ΠΊΠ°, ΠΎΠ±Ρ€Π°Π΄Π° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°, испаша ΠΈ Π΄Ρ€ΡƒΠ³ΠΎ. Π‘Ρ‚ΠΎΠ³Π° сС ΠΌΠΎΠΆΠ΅ ΠΎΡ‡Π΅ΠΊΠΈΠ²Π°Ρ‚ΠΈ Π΄Π° Π₯Π‘Π— ΠΈ Ρ…ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΡˆΠΊΠ° ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° Ρ‚Π°ΠΊΠΎΡ’Π΅ Π²Π°Ρ€ΠΈΡ€Π°Ρ˜Ρƒ постСпСно. Овај Ρ€Π°Π΄ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π° Π²Π°Ρ€ΠΈΡ˜Π°Π±ΠΈΠ»Π½ΠΎΡΡ‚ Π₯Π‘Π— ΠΈ Ρ…ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΡˆΠΊΠΈΡ… ΡΠ²ΠΎΡ˜ΡΡ‚Π°Π²Π° Ρƒ ΠΏΠΎΠ²Ρ€ΡˆΠΈΠ½ΡΠΊΠΎΠΌ ΡΠ»ΠΎΡ˜Ρƒ (0–15 Ρ†ΠΌ) бСскарбонатнС, ΠΏΡ€Π°ΡˆΠΊΠ°ΡΡ‚ΠΎ-глинастС ливадскС Ρ†Ρ€Π½ΠΈΡ†Π΅ (Fluvisol) Ρƒ Π΄ΠΎΠ»ΠΈΠ½ΠΈ ΠšΠΎΠ»ΡƒΠ±Π°Ρ€Π΅ ΠΈΠ·Π°Π·Π²Π°Π½Ρƒ вишСгодишњим (> 100 Π³ΠΎΠ΄ΠΈΠ½Π°) Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°. ΠœΠΠ’Π•Π Π˜ΠˆΠΠ› ΠΈ ΠœΠ•Π’ΠžΠ”: На блиском мСђусобном Ρ€Π°ΡΡ‚ΠΎΡ˜Π°ΡšΡƒ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½Π΅ су Π΄Π²Π΅ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ Π½Π°ΠΌΠ΅Π½Π΅ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° (ΠΌΠ΅ΡˆΠΎΠ²ΠΈΡ‚Π° ΡˆΠΈΡ€ΠΎΠΊΠΎΠ»ΠΈΡΠ½Π° листопадна ΡˆΡƒΠΌΠ° ΠΈ пашњак). Пашњак јС кошСн ΡƒΠ³Π»Π°Π²Π½ΠΎΠΌ само јСдном Ρƒ касно ΠΏΡ€ΠΎΠ»Π΅Ρ›Π΅, Π° каснијС су само ΠΏΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½ΠΎ напасанС ΠΊΡ€Π°Π²Π΅ (2–3 ΠΊΡ€Π°Π²Π΅ ха–1) ΠΈ ΠΎΠ²Ρ†Π΅ (8–10 ΠΎΠ²Π°Ρ†Π° ха–1). Π£Π½ΡƒΡ‚Π°Ρ€ сваког Π½Π°Ρ‡ΠΈΠ½Π° ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° ΠΈΠ·Π°Π±Ρ€Π°Π½Π΅ су Ρ‚Ρ€ΠΈ Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π΅ Π½Π° којима јС спровСдСн исти ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌ ΠΌΠ΅Ρ€Π΅ΡšΠ° густинС сувог Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° (ρb), ΠšΡΠ°Ρ‚, ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚Π° ΠΈΠ½Ρ„ΠΈΠ»Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π΅, ΠŸΠ’Πš ΠΈ Ρ€Π΅Ρ‚Π΅Π½Ρ†ΠΈΠΎΠ½Π΅ ΠΊΡ€ΠΈΠ²Π΅ стандардним ΠΌΠ΅Ρ’ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠ°. ΠšΠΎΡ€ΠΈΡΡ‚Π΅Ρ›ΠΈ овај ΠΏΠ»Π°Π½ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ°, прСтпоставили смо Π΄Π° сС ΠΌΠΎΠ³Ρƒ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Ρ‚ΠΈ систСматскС Ρ€Π°Π·Π»ΠΈΠΊΠ΅ Ρƒ Π₯Π‘Π— ΠΈ Ρ…ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΡˆΠΊΠΈΠΌ ΡΠ²ΠΎΡ˜ΡΡ‚Π²ΠΈΠΌΠ° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° Ρƒ ΠΏΠΎΠ³Π»Π΅Π΄Ρƒ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°. Π Π•Π—Π£Π›Π’ΠΠ’Π˜ ΠΈ Π—ΠΠšΠ‰Π£Π§Π¦Π˜: Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ ΠΏΠΎΠΊΠ°Π·ΡƒΡ˜Ρƒ Π΄Π° ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° ΠΈΠΌΠ° Π·Π½Π°Ρ‡Π°Ρ˜Π°Π½ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° испитивана ΡΠ²ΠΎΡ˜ΡΡ‚Π°Π²Π° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½Π΅ Ρ€Π°Π·Π»ΠΈΠΊΠ΅ су статистички Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ са Π²Π΅Ρ€ΠΎΠ²Π°Ρ‚Π½ΠΎΡ›ΠΎΠΌ ΠΎΠ΄ 5%. Π£ΠΎΡ‡Π΅Π½ΠΎ јС ΠΏΠΎΠ²Π΅Ρ›Π°ΡšΠ΅ ρb ΠΎΠ΄ ΡˆΡƒΠΌΠ΅ (0,99 Π³ цм–3) Π΄ΠΎ пашњака (1,49 Π³ цм–3) Ρƒ ΠΏΠΎΠ²Ρ€ΡˆΠΈΠ½ΡΠΊΠΎΠΌ ΡΠ»ΠΎΡ˜Ρƒ истраТиваног Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°, ΡˆΡ‚ΠΎ јС Ρƒ складу са Π½Π°Π»Π°Π·ΠΈΠΌΠ° ΠΈΠ· Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅. Као ΡˆΡ‚ΠΎ сС ΠΈ ΠΎΡ‡Π΅ΠΊΠΈΠ²Π°Π»ΠΎ, ΠšΡΠ°Ρ‚ јС Π²Π΅Ρ›Π° Ρƒ ΡˆΡƒΠΌΠΈ (>100 ΠΌ дан–1) Ρƒ ΠΏ ΠΎΡ€Π΅Ρ’Π΅ΡšΡƒ с Π° ΠΏ ашњаком ( 0,30 ΠΌ Π΄ ан–1). ΠšΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚ ΠΈΠ½Ρ„ΠΈΠ»Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π΅ Π·Π° ΡˆΡƒΠΌΡΠΊΠΎ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π΅ јС Π·Π½Π°Ρ‚Π½ΠΎ Π²Π΅Ρ›ΠΈ Π½Π΅Π³ΠΎ Π·Π° пашњак, Π·Π° ΡˆΡ‚Π° сС ΠΌΠΎΠΆΠ΅ прСтпоставити Π΄Π° јС послСдица Π²Π΅Ρ›Π΅ врСдности ΠšΡΠ°Ρ‚ ΠΏΠΎΠ²Ρ€ΡˆΠΈΠ½ΡΠΊΠΎΠ³ слоја Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°. Π¨Ρ‚ΠΎ сС Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π΅ ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΈΡ˜Π΅ користи (пашњак > ΡˆΡƒΠΌΠ°), мањС Π²ΠΎΠ΄Π΅ сС ΡΠΊΠ»Π°Π΄ΠΈΡˆΡ‚ΠΈ Ρƒ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Ρƒ Π½Π° ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΎΠΌ притиску. Шумско Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π΅ јС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ Π·Π½Π°Ρ‚Π½ΠΎ Π²Π΅Ρ›ΠΈ просСчни ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ Π²ΠΎΠ΄Π΅ (46% запрСминска) Π½Π΅Π³ΠΎ ΠΏΠ°ΡˆΡšΠ°Ρ‡ΠΊΠΎ (38%) Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π΅ Π½Π° pF 2,5, који јС ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½ ΠΊΠ°ΠΎ Π·Π°ΠΌΠ΅Π½Π° Π·Π° пољски Π²ΠΎΠ΄Π½ΠΈ ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚. Π˜ΡΡ‚Π° структура Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° јС ΠΏΡ€ΠΎΠ½Π°Ρ’Π΅Π½Π° ΠΈ Π·Π° Π΄Ρ€ΡƒΠ³Π΅ pF врСдности. ΠžΡ‚ΡƒΠ΄Π° сС ΠΌΠΎΠΆΠ΅ прСтпоставити Π΄Π° ΠΏΠΎΠΌΠ΅Ρ€Π°ΡšΠ΅ ΠΊΡ€ΠΈΠ²Π΅ Π·Π°Π΄Ρ€ΠΆΠ°Π²Π°ΡšΠ° Π²ΠΎΠ΄Π΅ ΡƒΠ·Ρ€ΠΎΠΊΡƒΡ˜Π΅ смањСњС приступачнС Π²ΠΎΠ΄Π΅ Π·Π° Π±ΠΈΡ™ΠΊΠ΅. Π—Π°ΠΊΡ™ΡƒΡ‡Π½ΠΎ, ΠΎΠ²ΠΎ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅ ΡƒΠΊΠ°Π·ΡƒΡ˜Π΅ Π΄Π° ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° ΠΈΠΌΠ° Π²Π°ΠΆΠ°Π½ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° Ρ…ΠΈΠ΄Ρ€Π°ΡƒΠ»ΠΈΡ‡ΠΊΠ° ΠΈ Ρ…ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΡˆΠΊΠ° ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°. Π˜Π½Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΈΡ˜Π° ΠΏΠΎΡ™ΠΎΠΏΡ€ΠΈΠ²Ρ€Π΅Π΄Π½Π° ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π°, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ јС пашњак Ρƒ овој ΡΡ‚ΡƒΠ΄ΠΈΡ˜ΠΈ, ΠΏΠΎΠ²Π΅Ρ›Π°Π²Π° ρb ΠΈ ΡΠΌΠ°ΡšΡƒΡ˜Π΅ ΠšΡΠ°Ρ‚ ΠΈ ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ Π²ΠΎΠ΄Π΅ која јС приступачна Π±ΠΈΡ™ΠΊΠ°ΠΌΠ° (смањСн ΠŸΠ’Πš). Ово јС ΡƒΠ³Π»Π°Π²Π½ΠΎΠΌ Π·Π±ΠΎΠ³ сабијања Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° ΠΏΡ€ΠΈ ΠΏΡ€Π΅ΠΊΠΎΠΌΠ΅Ρ€Π½ΠΎΡ˜ испаши која Π΄ΠΎΠ²ΠΎΠ΄ΠΈ Π΄ΠΎ Π³ΡƒΠ±ΠΈΡ‚ΠΊΠ° ΠΌΠ°ΠΊΡ€ΠΎΠΏΠΎΡ€Π°. Π—Π°ΠΏΠ°ΠΆΠ°ΡšΠ° Π΄Π°Ρ‚Π° Ρƒ ΠΎΠ²ΠΎΠΌ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΡƒ ΠΈΠΌΠ°Ρ˜Ρƒ Π²Π°ΠΆΠ°Π½ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π°ΡšΠ΅ Ρ…ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΡˆΠΊΠΈΡ… процСса ΠΈ Π½Π° Ρ€Π°Π·Ρ€Π°Π΄Ρƒ Ρ…ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΡˆΠΊΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π°. Они чСсто ΡƒΠ·ΠΈΠΌΠ°Ρ˜Ρƒ Ρƒ ΠΎΠ±Π·ΠΈΡ€ ΠΌΠ°Π»Ρƒ просторну Π²Π°Ρ€ΠΈΡ˜Π°Π±ΠΈΠ»Π½ΠΎΡΡ‚ ΡΠ²ΠΎΡ˜ΡΡ‚Π°Π²Π° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°, Π°Π»ΠΈ ΡšΠΈΡ…ΠΎΠ²Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° Π½Π΅ зависи ΠΎΠ΄ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°. Ово ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅ јС ΠΏΠΎΠΊΠ°Π·Π°Π»Π° Π΄Π° ΠΎΠ²Π° прСтпоставка Π½Π΅ Π²Π°ΠΆΠΈ ΠΈ Π΄Π° сС Π½Π΅ ΠΌΠΎΠΆΠ΅ Ρ‚Π΅ΠΊ Ρ‚Π°ΠΊΠΎ Π·Π°Π½Π΅ΠΌΠ°Ρ€ΠΈΠ²Π°Ρ‚ΠΈ

    Genotipske specifičnosti strukture rodnog drveta jabuke (Malus Ρ… domestica Borkh.) u zavisnosti od uzgojne forme i sistema rezidbe

    Get PDF
    Proučavanje strukture rodnog drveta jabuke (Malus Ρ… domestica Borkh.) izvrΕ‘eno je sa ciljem definisanja sortnih specifičnosti u zavisnosti od uzgojne forme i primenjenog sistema rezidbe. IstraΕΎivanje je realizovano tokom trogodiΕ‘njeg perioda kod tri sorte jabuke izraΕΎenih sortnih specifičnosti u obrascima grananja i dve uzgojne forme sa odgovarajuΔ‡im sistemom rezidbe. Sprovedeno istraΕΎivanje jasno pokazuje da postoje izraΕΎene genotipskih specifičnosti u zastupljenosti pojedinih tipova rodnih grančica kod ispitivanih sorti jabuke. Evidentno je da osim sortnih specifičnosti struktura rodnog drveta nakon zimske rezidbe definisana je i interakcijskim efektom uzgojna forma Γ— sistem rezidbe. Bez obzira na sortu, uzgojni oblik i sistem rezidbe u strukturi rodnog drveta dominiraju kratke rodne grančice, dok je zastupljenost dugih rodnih grana relativno manje zastupljena kod oba sistema gajenja. Duge rodne grane imaju neΕ‘to veΔ‡u zastupljenost u strukturi rodnog drveta kod uzgoje forme centralna osovina
    • …
    corecore