115 research outputs found

    Information theoretic approach to single-particle and two-particle interference in multi-path interferometers

    Get PDF
    We propose entropic measures for the strength of single-particle and two-particle interference in interferometric experiments where each particle of a pair traverses a multi-path interferometer. Optimal single-particle interference excludes any two-particle interference, and vice versa. We report an inequality that states the compromises allowed by quantum mechanics in intermediate situations, and identify a class of two-particle states for which the upper bound is reached. Our approach is applicable to symmetric two-partite systems of any finite dimension.Comment: RevTex 4, 4 pages, 2 figure

    Better detection of Multipartite Bound Entanglement with Three-Setting Bell Inequalities

    Full text link
    It was shown in Phys. Rev. Lett., 87, 230402 (2001) that N (N >= 4) qubits described by a certain one parameter family F of bound entangled states violate Mermin-Klyshko inequality for N >= 8. In this paper we prove that the states from the family F violate Bell inequalities derived in Phys. Rev. A, 56, R1682 (1997), in which each observer measures three non-commuting sets of orthogonal projectors, for N >=7. We also derive a simple one parameter family of entanglement witnesses that detect entanglement for all the states belonging to F. It is possible that these new entanglement witnesses could be generated by some Bell inequalities.Comment: Revtex4, 1 figur

    Functional Bell inequalities can serve as a stronger entanglement witness

    Get PDF
    We consider a Bell inequality for a continuous range of settings of the apparatus at each site. This "functional" Bell inequality gives a better range of violation for generalized GHZ states. Also a family of N-qubit bound entangled states violate this inequality for N>5.Comment: 4 pages, REVTeX

    N-particle N-level singlet states: Some properties and applications

    Full text link
    Three apparently unrelated problems which have no solution using classical tools are described: the "N-strangers," "secret sharing," and "liar detection" problems. A solution for each of them is proposed. Common to all three solutions is the use of quantum states of total spin zero of N spin-(N-1)/2 particles.Comment: REVTeX4, 4 pages, 1 figur

    Filtering of the absolute value of photon-number difference for two-mode macroscopic quantum superpositions

    Full text link
    We discuss a device capable of filtering out two-mode states of light with mode populations differing by more than a certain threshold, while not revealing which mode is more populated. It would allow engineering of macroscopic quantum states of light in a way which is preserving specific superpositions. As a result, it would enhance optical phase estimation with these states as well as distinguishability of "macroscopic" qubits. We propose an optical scheme, which is a relatively simple, albeit non-ideal, operational implementation of such a filter. It uses tapping of the original polarization two-mode field, with a polarization neutral beam splitter of low reflectivity. Next, the reflected beams are suitably interfered on a polarizing beam splitter. It is oriented such that it selects unbiased polarization modes with respect to the original ones. The more an incoming two-mode Fock state is unequally populated, the more the polarizing beam splitter output modes are equally populated. This effect is especially pronounced for highly populated states. Additionally, for such states we expect strong population correlations between the original fields and the tapped one. Thus, after a photon-number measurement of the polarizing beam splitter outputs, a feed-forward loop can be used to let through a shutter the field, which was transmitted by the tapping beam splitter. This happens only if the counts at the outputs are roughly equal. In such a case, the transmitted field differs strongly in occupation number of the two modes, while information on which mode is more populated is non-existent (a necessary condition for preserving superpositions).Comment: 11 pages, 12 figure

    Four Photon Entanglement from Down Conversion

    Get PDF
    Double-pair emission from type-II parametric down conversion results in a highly entangled 4-photon state. Due to interference, which is similar to bunching from thermal emission, this state is not simply a product of two pairs. The observation of this state can be achieved by splitting the two emission modes at beam splitters and subsequent detection of a photon in each output. Here we describe the features of this state and give a Bell theorem for a 4-photon test of local realistic hidden variable theories.Comment: 5 pages, 1 figure, submitted to PR

    A feasible "Kochen-Specker" experiment with single particles

    Get PDF
    We present a simple experimental scheme which can be used to demonstrate an all-or-nothing type contradiction between non-contextual hidden variables and quantum mechanics. The scheme, which is inspired by recent ideas by Cabello and Garcia-Alcaine, shows that even for a single particle, path and spin information cannot be predetermined in a non-contextual way.Comment: 4 pages, 3 figure

    Violations of local realism with quNits up to N=16

    Get PDF
    Predictions for systems in entangled states cannot be described in local realistic terms. However, after admixing some noise such a description is possible. We show that for two quNits (quantum systems described by N dimensional Hilbert spaces) in a maximally entangled state the minimal admixture of noise increases monotonically with N. The results are a direct extension of those of Kaszlikowski et. al., Phys. Rev. Lett. {\bf 85}, 4418 (2000), where results for N9N\leq 9 were presented. The extension up to N=16 is possible when one defines for each N a specially chosen set of observables. We also present results concerning the critical detectors efficiency beyond which a valid test of local realism for entangled quNits is possible.Comment: 5 pages, 3 ps picture

    Minimum detection efficiency for a loophole-free atom-photon Bell experiment

    Get PDF
    In Bell experiments, one problem is to achieve high enough photodetection to ensure that there is no possibility of describing the results via a local hidden-variable model. Using the Clauser-Horne inequality and a two-photon non-maximally entangled state, a photodetection efficiency higher than 0.67 is necessary. Here we discuss atom-photon Bell experiments. We show that, assuming perfect detection efficiency of the atom, it is possible to perform a loophole-free atom-photon Bell experiment whenever the photodetection efficiency exceeds 0.50.Comment: REVTeX4, 4 pages, 1 figur

    A note on bound entanglement and local realism

    Full text link
    We show using a numerical approach that gives necessary and sufficient conditions for the existence of local realism, that the bound entangled state presented in Bennett et. al. Phys. Rev. Lett. 82, 5385 (1999) admits a local and realistic description. We also find the lowest possible amount of some appropriate entangled state that must be ad-mixed to the bound entangled state so that the resulting density operator has no local and realistic description and as such can be useful in quantum communication and quantum computation.Comment: 5 page
    corecore