51 research outputs found

    Sisyphus Cooling of Electrically Trapped Polyatomic Molecules

    Full text link
    The rich internal structure and long-range dipole-dipole interactions establish polar molecules as unique instruments for quantum-controlled applications and fundamental investigations. Their potential fully unfolds at ultracold temperatures, where a plethora of effects is predicted in many-body physics, quantum information science, ultracold chemistry, and physics beyond the standard model. These objectives have inspired the development of a wide range of methods to produce cold molecular ensembles. However, cooling polyatomic molecules to ultracold temperatures has until now seemed intractable. Here we report on the experimental realization of opto-electrical cooling, a paradigm-changing cooling and accumulation method for polar molecules. Its key attribute is the removal of a large fraction of a molecule's kinetic energy in each step of the cooling cycle via a Sisyphus effect, allowing cooling with only few dissipative decay processes. We demonstrate its potential by reducing the temperature of about 10^6 trapped CH_3F molecules by a factor of 13.5, with the phase-space density increased by a factor of 29 or a factor of 70 discounting trap losses. In contrast to other cooling mechanisms, our scheme proceeds in a trap, cools in all three dimensions, and works for a large variety of polar molecules. With no fundamental temperature limit anticipated down to the photon-recoil temperature in the nanokelvin range, our method eliminates the primary hurdle in producing ultracold polyatomic molecules. The low temperatures, large molecule numbers and long trapping times up to 27 s will allow an interaction-dominated regime to be attained, enabling collision studies and investigation of evaporative cooling toward a BEC of polyatomic molecules

    Vocal imitations and the identification of sound events

    Get PDF
    International audienceIt is commonly observed that a speaker vocally imitates a sound that she or he intends to communicate to an interlocutor. We report on an experiment that examined the assumption that vocal imitations can e ffectively communicate a referent sound, and that they do so by conveying the features necessary for the identifi cation of the referent sound event. Subjects were required to sort a set of vocal imitations of everyday sounds. The resulting clusters corresponded in most of the cases to the categories of the referent sound events, indicating that the imitations enabled the listeners to recover what was imitated. Furthermore, a binary decision tree analysis showed that a few characteristic acoustic features predicted the clusters. These features also predicted the classi fication of the referent sounds, but did not generalize to the categorization of other sounds. This showed that, for the speaker, vocally imitating a sound consists of conveying the acoustic features important for recognition, within the constraints of human vocal production. As such vocal imitations prove to be a phenomenon potentially useful to study sound identifi cation

    Global potential energy surface for the O2 + N2 interaction. Applications to the collisional, spectroscopic, and thermodynamic properties of the complex

    Get PDF
    A detailed characterization of the interaction between the most abundant molecules in air is important for the understanding of a variety of phenomena in atmospherical science. A completely {\em ab initio} global potential energy surface (PES) for the O2(3Σg)_2(^3\Sigma^-_g) + N2(1Σg+)_2(^1\Sigma^+_g) interaction is reported for the first time. It has been obtained with the symmetry-adapted perturbation theory utilizing a density functional description of monomers [SAPT(DFT)] extended to treat the interaction involving high-spin open-shell complexes. The computed interaction energies of the complex are in a good agreement with those obtained by using the spin-restricted coupled cluster methodology with singles, doubles and noniterative triple excitations [RCCSD(T)]. A spherical harmonics expansion containing a large number of terms due to the anisotropy of the interaction has been built from the {\em ab initio} data. The radial coefficients of the expansion are matched in the long range with the analytical functions based on the recent {\em ab initio} calculations of the electric properties of the monomers [M. Bartolomei et al., J. Comp. Chem., {\bf 32}, 279 (2011)]. The PES is tested against the second virial coefficient B(T)B(T) data and the integral cross sections measured with rotationally hot effusive beams, leading in both cases to a very good agreement. The first bound states of the complex have been computed and relevant spectroscopic features of the interacting complex are reported. A comparison with a previous experimentally derived PES is also provided

    Production of a dual-species Bose-Einstein condensate of Rb and Cs atoms

    Full text link
    We report the simultaneous production of Bose-Einstein condensates (BECs) of 87^{87}Rb and 133^{133}Cs atoms in separate optical traps. The two samples are mixed during laser cooling and loading but are separated by 400μ400 \mum for the final stage of evaporative cooling. This is done to avoid considerable interspecies three-body recombination, which causes heating and evaporative loss. We characterize the BEC production process, discuss limitations, and outline the use of the dual-species BEC in future experiments to produce rovibronic ground state molecules, including a scheme facilitated by the superfluid-to-Mott-insulator (SF-MI) phase transition

    Cold and Ultracold Molecules: Science, Technology, and Applications

    Full text link
    This article presents a review of the current state of the art in the research field of cold and ultracold molecules. It serves as an introduction to the Special Issue of the New Journal of Physics on Cold and Ultracold Molecules and describes new prospects for fundamental research and technological development. Cold and ultracold molecules may revolutionize physical chemistry and few body physics, provide techniques for probing new states of quantum matter, allow for precision measurements of both fundamental and applied interest, and enable quantum simulations of condensed-matter phenomena. Ultracold molecules offer promising applications such as new platforms for quantum computing, precise control of molecular dynamics, nanolithography, and Bose-enhanced chemistry. The discussion is based on recent experimental and theoretical work and concludes with a summary of anticipated future directions and open questions in this rapidly expanding research field.Comment: 82 pages, 9 figures, review article to appear in New Journal of Physics Special Issue on Cold and Ultracold Molecule

    Systems of ideals in commutative rings

    No full text
    The article contains no abstrac

    Measurement of possibility of sound insulation improvement of wood wall

    No full text
    Wyniki badaiń terenowych izolacyjności akustycznej ścian w budynku drewnianym, przeprowadzonych w ramach działalności naukowej Katedry Procesów Budowlanych [1], skłoniły autorów artykułu do kontynuacji tematu i poszerzenia wiedzy z tego zakresu o badania laboratoryjne wariantowych rozwiązań ścian drewnianych. Przedstawione wyniki badań próbują odpowiedzieć na pytanie jak przeprowadzone adaptacje ściany szkieletowej drewnianej wpływają na zmianę jej parametrów akustycznych.Results of field measurement of sound insulation described in article [1 ], encourage to continuation of the work. Authors executed laboratory measurement of sound insulation of engineered wood wall framing. This paper presents results for elementary exterior wall, wall with additional thermal insulation and 3 walls with acoustics adaptations. After made adaptations, weighted apparent sound reduction index Rw increase from 35 dB to 56+59 dB. The results prove how strongly index value is depend on range frequencies. Evidently range 50+5000 Hz is proper for definition exterior wall acoustics parameters

    Special systems of ideals and commutative rings

    No full text
    The article contains no abstrac
    corecore