32 research outputs found

    Ultracold mixtures of metastable He and Rb: scattering lengths from ab initio calculations and thermalization measurements

    Full text link
    We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet 4^4He and 87^{87}Rb in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+17−4+1a_{4+87}=+17^{+1}_{-4} a0a_0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.Comment: 11 pages, 11 figures, accepted for publication in Phys. Rev.

    Interaction between LiH molecule and Li atom from state-of-the-art electronic structure calculations

    Get PDF
    State-of-the-art ab initio techniques have been applied to compute the potential energy surface for the lithium atom interacting with the lithium hydride molecule in the Born–Oppenheimer approximation. The interaction potential was obtained using a combination of the explicitly correlated unrestricted coupled-cluster method with single, double, and noniterative triple excitations [UCCSD(T)-F12] for the core–core and core–valence correlation and full configuration interaction for the valence–valence correlation. The potential energy surface has a global minimum 8743 cm−1 deep if the Li–H bond length is held fixed at the monomer equilibrium distance or 8825 cm−1 deep if it is allowed to vary. In order to evaluate the performance of the conventional CCSD(T) approach, calculations were carried out using correlation-consistent polarized valence X-tuple-zeta basis sets, with X ranging from 2 to 5, and a very large set of bond functions. Using simple two-point extrapolations based on the single-power laws X−2 and X−3 for the orbital basis sets, we were able to reproduce the CCSD(T)–F12 results for the characteristic points of the potential with an error of 0.49% at worst. The contribution beyond the CCSD(T)–F12 model, obtained from full configuration interaction calculations for the valence–valence correlation, was shown to be very small, and the error bars on the potential were estimated. At linear LiH–Li geometries, the ground-state potential shows an avoided crossing with an ion-pair potential. The energy difference between the ground-state and excited-state potentials at the avoided crossing is only 94 cm−1. Using both adiabatic and diabatic pictures, we analyze the interaction between the two potential energy surfaces and its possible impact on the collisional dynamics. When the Li–H bond is allowed to vary, a seam of conical intersections appears at C2v geometries. At the linear LiH–Li geometry, the conical intersection is at a Li–H distance which is only slightly larger than the monomer equilibrium distance, but for nonlinear geometries it quickly shifts to Li–H distances that are well outside the classical turning points of the ground-state potential of LiH. This suggests that the conical intersection will have little impact on the dynamics of Li–LiH collisions at ultralow temperatures. Finally, the reaction channels for the exchange and insertion reactions are also analyzed and found to be unimportant for the dynamics

    Deceleration and trapping of heavy diatomic molecules using a ring-decelerator

    Full text link
    We present an analysis of the deceleration and trapping of heavy diatomic molecules in low-field seeking states by a moving electric potential. This moving potential is created by a 'ring-decelerator', which consists of a series of ring-shaped electrodes to which oscillating high voltages are applied. Particle trajectory simulations have been used to analyze the deceleration and trapping efficiency for a group of molecules that is of special interest for precision measurements of fundamental discrete symmetries. For the typical case of the SrF molecule in the (N,M) = (2, 0) state, the ring-decelerator is shown to outperform traditional and alternate-gradient Stark decelerators by at least an order of magnitude. If further cooled by a stage of laser cooling, the decelerated molecules allow for a sensitivity gain in a parity violation measurement, compared to a cryogenic molecular beam experiment, of almost two orders of magnitude

    Vocal imitations and the identification of sound events

    Get PDF
    International audienceIt is commonly observed that a speaker vocally imitates a sound that she or he intends to communicate to an interlocutor. We report on an experiment that examined the assumption that vocal imitations can e ffectively communicate a referent sound, and that they do so by conveying the features necessary for the identifi cation of the referent sound event. Subjects were required to sort a set of vocal imitations of everyday sounds. The resulting clusters corresponded in most of the cases to the categories of the referent sound events, indicating that the imitations enabled the listeners to recover what was imitated. Furthermore, a binary decision tree analysis showed that a few characteristic acoustic features predicted the clusters. These features also predicted the classi fication of the referent sounds, but did not generalize to the categorization of other sounds. This showed that, for the speaker, vocally imitating a sound consists of conveying the acoustic features important for recognition, within the constraints of human vocal production. As such vocal imitations prove to be a phenomenon potentially useful to study sound identifi cation

    On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH(3Σ−^3\Sigma^-) + NH(3Σ−^3\Sigma^-)

    Full text link
    We present a detailed analysis of the role of the magnetic dipole-dipole interaction in cold and ultracold collisions. We focus on collisions between magnetically trapped NH molecules, but the theory is general for any two paramagnetic species for which the electronic spin and its space-fixed projection are (approximately) good quantum numbers. It is shown that dipolar spin relaxation is directly associated with magnetic-dipole induced avoided crossings that occur between different adiabatic potential curves. For a given collision energy and magnetic field strength, the cross-section contributions from different scattering channels depend strongly on whether or not the corresponding avoided crossings are energetically accessible. We find that the crossings become lower in energy as the magnetic field decreases, so that higher partial-wave scattering becomes increasingly important \textit{below} a certain magnetic field strength. In addition, we derive analytical cross-section expressions for dipolar spin relaxation based on the Born approximation and distorted-wave Born approximation. The validity regions of these analytical expressions are determined by comparison with the NH + NH cross sections obtained from full coupled-channel calculations. We find that the Born approximation is accurate over a wide range of energies and field strengths, but breaks down at high energies and high magnetic fields. The analytical distorted-wave Born approximation gives more accurate results in the case of s-wave scattering, but shows some significant discrepancies for the higher partial-wave channels. We thus conclude that the Born approximation gives generally more meaningful results than the distorted-wave Born approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold Quantum Matter - Achievements and Prospects (2011

    Global potential energy surface for the O2 + N2 interaction. Applications to the collisional, spectroscopic, and thermodynamic properties of the complex

    Get PDF
    A detailed characterization of the interaction between the most abundant molecules in air is important for the understanding of a variety of phenomena in atmospherical science. A completely {\em ab initio} global potential energy surface (PES) for the O2(3Σg−)_2(^3\Sigma^-_g) + N2(1Σg+)_2(^1\Sigma^+_g) interaction is reported for the first time. It has been obtained with the symmetry-adapted perturbation theory utilizing a density functional description of monomers [SAPT(DFT)] extended to treat the interaction involving high-spin open-shell complexes. The computed interaction energies of the complex are in a good agreement with those obtained by using the spin-restricted coupled cluster methodology with singles, doubles and noniterative triple excitations [RCCSD(T)]. A spherical harmonics expansion containing a large number of terms due to the anisotropy of the interaction has been built from the {\em ab initio} data. The radial coefficients of the expansion are matched in the long range with the analytical functions based on the recent {\em ab initio} calculations of the electric properties of the monomers [M. Bartolomei et al., J. Comp. Chem., {\bf 32}, 279 (2011)]. The PES is tested against the second virial coefficient B(T)B(T) data and the integral cross sections measured with rotationally hot effusive beams, leading in both cases to a very good agreement. The first bound states of the complex have been computed and relevant spectroscopic features of the interacting complex are reported. A comparison with a previous experimentally derived PES is also provided

    Cold and Ultracold Molecules: Science, Technology, and Applications

    Full text link
    This article presents a review of the current state of the art in the research field of cold and ultracold molecules. It serves as an introduction to the Special Issue of the New Journal of Physics on Cold and Ultracold Molecules and describes new prospects for fundamental research and technological development. Cold and ultracold molecules may revolutionize physical chemistry and few body physics, provide techniques for probing new states of quantum matter, allow for precision measurements of both fundamental and applied interest, and enable quantum simulations of condensed-matter phenomena. Ultracold molecules offer promising applications such as new platforms for quantum computing, precise control of molecular dynamics, nanolithography, and Bose-enhanced chemistry. The discussion is based on recent experimental and theoretical work and concludes with a summary of anticipated future directions and open questions in this rapidly expanding research field.Comment: 82 pages, 9 figures, review article to appear in New Journal of Physics Special Issue on Cold and Ultracold Molecule

    Production of a dual-species Bose-Einstein condensate of Rb and Cs atoms

    Full text link
    We report the simultaneous production of Bose-Einstein condensates (BECs) of 87^{87}Rb and 133^{133}Cs atoms in separate optical traps. The two samples are mixed during laser cooling and loading but are separated by 400Ό400 \mum for the final stage of evaporative cooling. This is done to avoid considerable interspecies three-body recombination, which causes heating and evaporative loss. We characterize the BEC production process, discuss limitations, and outline the use of the dual-species BEC in future experiments to produce rovibronic ground state molecules, including a scheme facilitated by the superfluid-to-Mott-insulator (SF-MI) phase transition
    corecore