25 research outputs found

    A miniature world in decline: European Red List of Mosses, Liverworts and Hornworts

    Get PDF
    AimThis Red List is a summary of the conservation status of the European species of mosses, liverworts and hornworts, collectively known as bryophytes, evaluated according to IUCN’s Guidelines for Application of IUCN Red List Criteria at Regional Level. It provides the first comprehensive, region-wide assessment of bryophytes and it identifies those species that are threatened with extinction at a European level, so that appropriate policy measures and conservation actions, based on the best available evidence, can be taken to improve their status.ScopeAll bryophytes native to or naturalised in Europe (a total of 1,817 species), have been included in this Red List. In Europe, 1,796 species were assessed, with the remaining 21 species considered Not Applicable (NA). For the EU 28, 1,728 species were assessed, with a remaining 20 species considered NA and 69 species considered Not Evaluated (NE). The geographical scope is continentwide, extending from Iceland in the west to the Urals in the east, and from Franz Josef Land in the north to theCanary Islands in the south. The Caucasus region is not included. Red List assessments were made at two regional levels: for geographical Europe and for the 28 Member States of the European Union.ResultsOverall, 22.5% of European bryophyte species assessed in this study are considered threatened in Europe, with two species classified as Extinct and six assessed as Regionally Extinct (RE). A further 9.6% (173 species) are considered Near Threatened and 63.5% (1,140 species) are assessed as Least Concern. For 93 species (5.3%), there was insufficient information available to be able to evaluate their risk of extinction and thus they were classified as Data Deficient (DD). The main threats identified were natural system modifications (i.e., dam construction, increases in fire frequency/intensity, and water management/use), climate change (mainly increasing frequency of droughts and temperature extremes), agriculture (including pollution from agricultural effluents) and aquaculture.RecommendationsPolicy measures• Use the European Red List as the scientific basis to inform regional/national lists of rare and threatened species and to identify priorities for conservation action in addition to the requirements of the Habitats Directive, thereby highlighting the conservation status of bryophytes at the regional/local level.• Use the European Red List to support the integration of conservation policy with the Common Agricultural Policy (CAP) and other national and international policies. For example, CAP Strategic Plans should include biodiversity recovery commitments that could anticipate, among others, the creation of Important Bryophyte Areas. An increased involvement of national environmental agencies in the preparation of these strategic plans, and more broadly in ongoing discussions on the Future CAP Green Architecture, would likely also ensure the design of conservation measures better tailored to conserve bryophytes in agricultural landscapes.• Update the European Red List every decade to ensure that the data remains current and relevant.• Develop Key Biodiversity Areas for bryophytes in Europe with a view to ensuring adequate site-based protection for bryophytes.Research and monitoring• Use the European Red List as a basis for future targeted fieldwork on possibly extinct and understudied species.• Establish a monitoring programme for targeted species (for example, threatened species and/or arable bryophytes).• Use the European Red List to obtain funding for research into the biology and ecology of key targeted species.Action on the ground• Use the European Red List as evidence to support multi-scale conservation initiatives, including designation of protected areas, reform of agricultural practices and land management, habitat restoration and rewilding, and pollution reduction measures.• Use the European Red List as a tool to target species that would benefit the most from the widespread implementation of the solutions offered by the 1991 Nitrates Directive (Council Directive 91/676/EEC), including the application of correct amounts of nutrients for each crop, only in periods of crop growth under suitable climatic conditions and never during periods of heavy rainfall or on frozen ground, and the creation of buffer zones to protect waters from run-off from the application of fertilizers.Ex situ conservation• Undertake ex situ conservation of species of conservation concern in botanic gardens and spore and gene banks, with a view to reintroduction where appropriate.</p

    Aktywność reduktazy azotanowej u wybranych mchów na przykładzie hałdy powęglowej skalny

    No full text
    Two species of mosses in relation to nitrogen metabolism were examined. This subject is little known in this group of plant. Investigations of nitrate reductase activity in green tissues of Brachythecium rutabulum (Hedw.) Schimp. and Atrichum undulatum (Hedw.) P.Beauv. were performed. The study was conducted in two localities: heavy contaminated waste tip Skalny located in Upper Silesia, and Blonia City Park in Bielsko-Biala which place was chosen as a control area. For both species high activity of the enzyme was detected. The nitrate reductase activity varied between 99 to 9093 nmol per g dry mass per hour for B. rutabulum and 265 to 5135 nmol per g d.m. per hour of nitrite synthesized for A. undulatum respectively on Skalny waste tip. In the control area the results varied between 747 to 1077 for B. rutabulum and 171 to 518 nmol per g d.m. per hour of nitrite synthesized for A. undulatum, respectively. The differences were statistically significant only between the two species but not between habitats probably due to high dispersion and small amount of replications. The levels of nitrate and nitrite in stream water in both areas were also measured. In the Skalny waste tip there were high and reached 1.66 mg dm-3 of nitrite and 65 mg dm-3 of nitrate, respectively. In the control area these amounts were lower and reach zero level for nitrite and 4.5 mg dm-3 of nitrate, respectively.Dwa gatunki mchów badano pod kątem asymilacji azotu. To zagadnienie jest mało poznane u tej grupy roślin. Przeprowadzono badania aktywności reduktazy azotanowej w zielonych tkankach Brachythecium rutabulum (Hedw.) Schimp. i Atrichum undulatum (Hedw.) P.Beauv. Badania zostały wykonane w dwóch miejscach: na hałdzie powęglowej Skalny na Górnym Śląsku i w parku w dzielnicy Błonia w Bielsku-Białej, które zostało wybrane jako miejsce kontrolne. Dla obu gatunków stwierdzono wysoką aktywność enzymu. Aktywność reduktazy azotanowej wahała się od 99 do 9093 nmol na g suchej masy na godzinę dla B. rutabulum i 265 do 5135 nmol na g suchej masy na godzinę azotynu syntetyzowanego u A. undulatum na hałdzie Skalny. W miejscu kontrolnym wyniki wahały się od 747 do 1077 dla B. rutabulum i 171 do 518 nmol na g sm/h u A. undulatum. Różnice były statystycznie znaczące tylko pomiędzy gatunkami, ale nie pomiędzy typem siedliska prawdopodobnie ze względu na wysoką dyspersję i małą liczbę powtórzeń. Zmierzono także poziom azotanów i azotynów w strumieniu wody w obu miejscach. Na hałdzie Skalny zawartość była wysoka i osiągnęła odpowiednio: 1,66 mg dm-3 azotynu oraz 65 mg dm-3 azotanu. W miejscu kontrolnym wartości te były niższe i osiągnęły odpowiednio poziom zerowy dla azotynów i 4,5 mg dm-3 dla azotanu

    Corrosion and microbiological study in Geotermia Mazowiecka S.A.

    No full text
    Jednym z ważnych problemów determinujących koszty eksploatacji wód geotermalnych jest korozja rur wydobywczych, instalacji obiegu geotermalnego, armatury oraz kolmatacja otworów zatłaczających. Zjawiska te związane są z korozją mikrobiologiczną w anaerobowym środowisku wody geotermalnej zawierającej CO2. W niniejszym artykule przedstawiono kompleksowe badania korozyjne i mikrobiologiczne w Geotermii Mazowieckiej S.A. Badania mikrobiologiczne wykazały obecnoś bakterii redukujących siarczany (SRB) w osadach ko rozyjnych i mineralnych. Identyfikację bakterii przeprowadzono techniką reakcji amplifikacji PCR fragmentu genu 16S rRNA i stwierdzono występowanie: Desulfovibrio – Desulfomicrobium, Desulfobacter oraz Desulfotomaculum. Obecność tych bakterii jest przyczyną tworzenia warstwy produktów korozji zbudowanej w głównej mierze z amorficznego siarczku żelaza. Woltamperometryczne i impedancyjne pomiary elektrochemiczne pro- wadzone w laboratorium oraz w stacji korozyjnej Geotermii pozwoliły na przedstawienie wpływu obecności bakterii SRB na mechanizm korozji stali węglowej i stali stopowej. Stacja prowadzi monitorowanie i akwizycję danych fizykochemicznych i korozyjnych z możliwością zarządzania z poziomu centrum dyspozycyjnego Geotermii Mazowieckiej S.A.One of the important issues that determine the operating costs of a geothermal plant is the corrosion of casing, geothermal installations, fittings and deposit colmatation. These phenomena are connected with microbially induced corrosion in anaerobic environment of geothermal water containing CO2. The paper presents a com- prehensive study of corrosion and microbiological corrosion in the Geotermia Mazowiecka plant. Microbiological investigations showed the presence of sulphate-reducing bacteria (SRB) in mineral and corrosion deposits. Identification of the bacteria was performed by PCR amplification of the 16S rRNA gene and the following bacteria have been identified: Desulfovibrio – Desulfomicrobium, Desulfobacter and Desulfotomaculum. The presence of these bacteria is the cause of the formation of a corrosion products layer containing mainly amorphous iron sulfide. Voltammetric and impedance measurements conducted in the laboratory and in the corrosion station at Geotermia Mazowiecka S.A. allowed the influence of SRB on the corrosion mechanism of carbon and alloyed steel to be studied. The station is able to monitor the corrosion and acquisition of physico-chemical data to managed from the Geotermia Mazowiecka S.A. dispatch centre level

    New national and regional bryophyte records, 46

    No full text
    Fil: Ellis, L.T.. Natural History Museum; Reino UnidoFil: Asthana, A.K.. Csir-national Botanical Research Institute; IndiaFil: Srivastava, P.. Csir-national Botanical Research Institute; IndiaFil: Omar, I.. Csir-national Botanical Research Institute; IndiaFil: Rawat, K.K.. Csir-national Botanical Research Institute; IndiaFil: Sahu, V.. Csir-national Botanical Research Institute; IndiaFil: Cano, M.J.. Universidad de Murcia; EspañaFil: Costa, D.P.. Instituto de Pesquisas Jardim Botanico Do Rio de Janerio;Fil: Dias, E.M.. Universidade Federal de Pernambuco; Brasil. Estadual University Of Paraíba;Fil: Dias dos Santos, N.. Universidade Federal de Pernambuco; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Silva, J.B.. Universidade Federal de Pernambuco; BrasilFil: Fedosov, V.E.. Lomonosov Moscow State University;Fil: Kozhin, M.N.. Lomonosov Moscow State University;Fil: Ignatova, E.A.. Lomonosov Moscow State University;Fil: Germano, S.R.. Estadual University Of Paraíba;Fil: Golovina, E.O.. Komarov Botanical Institute, Russian Academy Of Sciences;Fil: Gremmen, N.J.M.. Diever; Países BajosFil: Ion, R.. Academia Romana, Institutul de Biologie Bucuresti;Fil: Ştefǎnuţ, S.. Academia Romana, Institutul de Biologie Bucuresti;Fil: von Konrat, M.. Field Museum Of Natural History;Fil: Jimenez, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaFil: Suarez, Guillermo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Miguel Lillo; ArgentinaFil: Kiebacher, T.. Eidgenossische Forschungsanstalt Fur Wald, Schnee Und Landschaft Eth-bereichs;Fil: Lebouvier, M.. Centre National de la Recherche Scientifique; FranciaFil: Long, D.G.. Royal Botanic Gardens; Reino UnidoFil: Maity, D.. University Of Calcutta; IndiaFil: Ochyra, R.. Polish Academy of Sciences; ArgentinaFil: Parnikoza, I.. Institute Of Molecular Biology And Genetics National Academy Of Sciences Of Ukraine;Fil: Plášek, V.. Ostravska Univerzita V Ostrave;Fil: Fialová, L.. Ostravska Univerzita V Ostrave;Fil: Skoupá, Z.. Ostravska Univerzita V Ostrave;Fil: Poponessi, S.. Universita Degli Di Camerino; ItaliaFil: Aleffi, M.. Universita Degli Di Camerino; ItaliaFil: Sabovljević, M.S.. University Of Belgrade; SerbiaFil: Sabovljević, A.D.. University Of Belgrade; SerbiaFil: Saha, P.. Ministry Of Environment &amp;Fil: Aziz, M.N.. Ministry Of Environment &amp;Fil: Sawicki, J.. Ostravska Univerzita V Ostrave; . Uniwersytet Warminsko-mazurski W Olsztynie;Fil: Suleiman, M.. Universiti Malaysia;Fil: Sun, B.-Y.. Chonbuk National University;Fil: Vá?a, J.. Charles University;Fil: Wójcik, T.. University Of Rzeszow;Fil: Yoon, Y.-J.. Korea Polar Research Institute;Fil: Żarnowiec, J.. University Of Bielsko-biala;Fil: Larraín, J.. Pontificia Universidad Católica de Valparaíso; Chil
    corecore