21 research outputs found

    Global gene expression changes in human embryonic lung fibroblasts induced by organic extracts from respirable air particles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, we used cell-free assays to demonstrate the toxic effects of complex mixtures of organic extracts from urban air particles (PM2.5) collected in four localities of the Czech Republic (Ostrava-Bartovice, Ostrava-Poruba, Karvina and Trebon) which differed in the extent and sources of air pollution. To obtain further insight into the biological mechanisms of action of the extractable organic matter (EOM) from ambient air particles, human embryonic lung fibroblasts (HEL12469) were treated with the same four EOMs to assess changes in the genome-wide expression profiles compared to DMSO treated controls.</p> <p>Method</p> <p>For this purpose, HEL cells were incubated with subtoxic EOM concentrations of 10, 30, and 60 μg EOM/ml for 24 hours and global gene expression changes were analyzed using human whole genome microarrays (Illumina). The expression of selected genes was verified by quantitative real-time PCR.</p> <p>Results</p> <p>Dose-dependent increases in the number of significantly deregulated transcripts as well as dose-response relationships in the levels of individual transcripts were observed. The transcriptomic data did not differ substantially between the localities, suggesting that the air pollution originating mainly from various sources may have similar biological effects. This was further confirmed by the analysis of deregulated pathways and by identification of the most contributing gene modulations. The number of significantly deregulated KEGG pathways, as identified by Goeman's global test, varied, depending on the locality, between 12 to 29. The Metabolism of xenobiotics by cytochrome P450 exhibited the strongest upregulation in all 4 localities and <it>CYP1B1 </it>had a major contribution to the upregulation of this pathway. Other important deregulated pathways in all 4 localities were ABC transporters (involved in the translocation of exogenous and endogenous metabolites across membranes and DNA repair), the Wnt and TGF-β signaling pathways (associated particularly with tumor promotion and progression), Steroid hormone biosynthesis (involved in the endocrine-disrupting activity of chemicals), and Glycerolipid metabolism (pathways involving the lipids with a glycerol backbone including lipid signaling molecules).</p> <p>Conclusion</p> <p>The microarray data suggested a prominent role of activation of aryl hydrocarbon receptor-dependent gene expression.</p

    Chromosomal Aberrations in Lymphocytes of Healthy Subjects and Risk of Cancer

    Get PDF
    There is evidence that increased frequency of chromosomal aberration (CA) in peripheral blood lymphocytes is a predictor of cancer, but further data are needed to better characterize CA as marker of cancer risk. From the archives of 15 laboratories we gathered cytogenetic records of 11,834 subjects who were free of cancer at the moment of blood drawing and who underwent cytogenetic examination for preventive purposes in the Czech Republic during 1975–2000. We linked these records to the national cancer registry, revealing a total of 485 cancer cases. Subjects were classified according to the percentiles of CA distribution within each laboratory as low (0–33rd percentile), medium (34–66th percentile), and high (66–100th percentile). Subjects were further classified by occupational exposure and by subclass of CA. We found a significant association between the overall cancer incidence and the presence of chromosome-type aberrations [relative risk (RR) for high vs. low CA level = 1.24; 95% confidence interval (CI), 1.03–1.50] but not chromatid-type aberrations. Stomach cancer showed a strong association with frequency of total CA (RR = 7.79; 95% CI, 1.01–60.0). The predictivity of CA observed in subjects exposed to various classes of carcinogens did not significantly differ from the group of nonexposed subjects. This study contributes to validation of CA as a predictive marker of cancer risk, in particular, of stomach cancer; the association between CA frequency and cancer risk might be limited to chromosome-type aberrations

    Ambient Air Pollution and Pregnancy Outcomes: A Review of the Literature

    Get PDF
    Over the last decade or so, a large number of studies have investigated the possible adverse effects of ambient air pollution on birth outcomes. We reviewed these studies, which were identified by a systematic search of the main scientific databases. Virtually all reviewed studies were population based, with information on exposure to air pollution derived from routine monitoring sources. Overall, there is evidence implicating air pollution in adverse effects on different birth outcomes, but the strength of the evidence differs between outcomes. The evidence is sufficient to infer a causal relationship between particulate air pollution and respiratory deaths in the postneonatal period. For air pollution and birth weight the evidence suggests causality, but further studies are needed to confirm an effect and its size and to clarify the most vulnerable period of pregnancy and the role of different pollutants. For preterm births and intrauterine growth retardation (IUGR) the evidence as yet is insufficient to infer causality, but the available evidence justifies further studies. Molecular epidemiologic studies suggest possible biologic mechanisms for the effect on birth weight, premature birth, and IUGR and support the view that the relation between pollution and these birth outcomes is genuine. For birth defects, the evidence base so far is insufficient to draw conclusions. In terms of exposure to specific pollutants, particulates seem the most important for infant deaths, and the effect on IUGR seems linked to polycyclic aromatic hydrocarbons, but the existing evidence does not allow precise identification of the different pollutants or the timing of exposure that can result in adverse pregnancy outcomes

    Air Pollution and Lymphocyte Phenotype Proportions in Cord Blood

    Get PDF
    Effects of air pollution on morbidity and mortality may be mediated by alterations in immune competence. In this study we examined short-term associations of air pollution exposures with lymphocyte immunophenotypes in cord blood among 1,397 deliveries in two districts of the Czech Republic. We measured fine particulate matter < 2.5 μm in diameter (PM(2.5)) and 12 polycyclic aromatic hydrocarbons (PAHs) in 24-hr samples collected by versatile air pollution samplers. Cord blood samples were analyzed using a FACSort flow cytometer to determine phenotypes of CD3(+) T-lymphocytes and their subsets CD4(+) and CD8(+), CD19(+) B-lymphocytes, and natural killer cells. The mothers were interviewed regarding sociodemographic and lifestyle factors, and medical records were abstracted for obstetric, labor and delivery characteristics. During the period 1994 to 1998, the mean daily ambient concentration of PM(2.5) was 24.8 μg/m(3) and that of PAHs was 63.5 ng/m(3). In multiple linear regression models adjusted for temperature, season, and other covariates, average PAH or PM(2.5) levels during the 14 days before birth were associated with decreases in T-lymphocyte phenotype fractions (i.e., CD3(+) CD4(+), and CD8(+)), and a clear increase in the B-lymphocyte (CD19(+)) fraction. For a 100-ng/m(3) increase in PAHs, which represented approximately two standard deviations, the percentage decrease was −3.3% [95% confidence interval (CI), −5.6 to −1.0%] for CD3(+), −3.1% (95% CI, −4.9 to −1.3%) for CD4(+), and −1.0% (95% CI, −1.8 to −0.2%) for CD8(+) cells. The corresponding increase in the CD19(+) cell proportion was 1.7% (95% CI, 0.4 to 3.0%). Associations were similar but slightly weaker for PM(2.5). Ambient air pollution may influence the relative distribution of lymphocyte immunophenotypes of the fetus

    Lifetime carcinogenic risk proportions from inhalation exposures in industrial and non-industrial regions

    Get PDF
    The aim of this work was to estimate the share of selected significant risk factors for respiratory cancer in the overall incidence of this disease and their comparison in two environmentally different burdened regions. A combination of a longitudinal cross-sectional population study with a US EPA health risk assessment methodology was used. The result of this procedure is the expression of lifelong carcinogenic risks and their contribution in the overall incidence of the disease. Compared to exposures to benzo[a]pyrene in the air and fibrogenic dust in the working air, several orders of magnitude higher share of the total incidence of respiratory cancer was found in radon exposures, for women 60% in the industrial area, respectively 100% in the non-industrial area, for men 24%, respectively 15%. The share of risks in workers exposed to fibrogenic dust was found to be 0.35% in the industrial area. For benzo[a]pyrene, the share of risks was below 1% and the share of other risk factors was in the monitored areas was up to 85%. The most significant share in the development of respiratory cancer in both monitored areas is represented by radon for women and other risk factors for men.Web of Science1824art. no. 1329

    Coal Home Heating and Environmental Tobacco Smoke in Relation to Lower Respiratory Illness in Czech Children, from Birth to 3 Years of Age

    Get PDF
    OBJECTIVE: The objective of this study was to evaluate how indoor pollution from tobacco and home heating may adversely affect respiratory health in young children. DESIGN: A birth cohort was followed longitudinally for 3 years to determine incidence of lower respiratory illness (LRI). PARTICIPANTS: A total of 452 children born 1994–1996 in two districts in the Czech Republic participated. EVALUATIONS: Indoor combustion exposures were home heating and cooking fuel, mother’s smoking during pregnancy, and other adult smokers in the household. Diagnoses of LRI (primarily acute bronchitis) from birth to 3 years of age were abstracted from pediatric records. Questionnaires completed at delivery and at 3-year follow-up provided covariate information. LRI incidence rates were modeled with generalized linear models adjusting for repeated measures and for numerous potential confounders. RESULTS: LRI diagnoses occurred more frequently in children from homes heated by coal [vs. other energy sources or distant furnaces; rate ratio (RR) = 1.45; 95% confidence interval (CI), 1.07–1.97]. Maternal prenatal smoking and other adult smokers also increased LRI rates (respectively: RR = 1.48; 95% CI, 1.10–2.01; and RR = 1.29; 95% CI, 1.01–1.65). Cooking fuels (primarily electricity, natural gas, or propane) were not associated with LRI incidence. For children never breast-fed, coal home heating and mother’s smoking conferred substantially greater risks: RR = 2.77 (95% CI, 1.45–5.27) and RR = 2.52 (95% CI, 1.31–4.85), respectively. CONCLUSIONS: Maternal smoking and coal home heating increased risk for LRI in the first 3 years of life, particularly in children not breast-fed. RELEVANCE: Few studies have described effects of coal heating fuel on children’s health in a Western country. Breast-feeding may attenuate adverse effects of prenatal and childhood exposures to combustion products

    Comparison of DNA adducts from exposure to complex mixtures in various human tissues and experimental systems

    Get PDF
    DNA adducts derived from complex mixtures of polycyclic aromatic compounds emitted from tobacco smoke are compared to industrial pollution sources (e.g., coke ovens and aluminum smelters), smoky coal burning, and urban air pollution. Exposures to coke oven emissions and smoky coal, both potent rodent skin tumor initiators and lung carcinogens in humans, result in high levels of DNA adducts compared to tobacco smoke in the in vitro calf thymus DNA model system, in cultured lymphocytes, and in the mouse skin assay. Using tobacco smoke as a model in human studies, we have compared relative DNA adduct levels detected in blood lymphocytes, placental tissue, bronchoalveolar lung lavage cells, sperm, and autopsy tissues of smokers and nonsmokers. Adduct levels in DNA isolated from smokers were highest in human heart and lung tissue with smaller but detectable differences in placental tissue and lung lavage cells. Comparison of the DNA adduct levels resulting from human exposure to different complex mixtures shows that emissions from coke ovens, aluminum smelters, and smoky coal result in higher DNA adduct levels than tobacco smoke exposure. These studies suggest that humans exposed to complex combustion mixtures will have higher DNA adduct levels in target cells (e.g., lung) as compared to nontarget cells (e.g., lymphocytes) and that the adduct levels will be dependent on the genotoxic and DNA adduct-forming potency of the mixture

    Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toxic exposures have been shown to influence maturation of the immune system during gestation. This study investigates the association between cord blood lymphocyte proportions and maternal exposure to air pollution during each gestational month.</p> <p>Methods</p> <p>Cord blood was analyzed using a FACSort flow cytometer to determine proportions of T lymphocytes (CD3<sup>+ </sup>cells and their subsets, CD4<sup>+ </sup>and CD8<sup>+</sup>), B lymphocytes (CD19<sup>+</sup>) and natural killer (NK) cells. Ambient air concentrations of 12 polycyclic aromatic hydrocarbons (PAH) and particulate matter < 2.5 micrometer in diameter (PM<sub>2.5</sub>) were measured using fixed site monitors. Arithmetic means of these pollutants, calculated for each gestational month, were used as exposure metrics. Data on covariates were obtained from medical records and questionnaires. Multivariable linear regression models were fitted to estimate associations between monthly PAH or PM<sub>2.5 </sub>and cord blood lymphocytes, adjusting for year of birth and district of residence and, in further models, gestational season and number of prior live births.</p> <p>Results</p> <p>The adjusted models show significant associations between PAHs or PM<sub>2.5 </sub>during early gestation and increases in CD3<sup>+ </sup>and CD4<sup>+ </sup>lymphocytes percentages and decreases in CD19<sup>+ </sup>and NK cell percentages in cord blood. In contrast, exposures during late gestation were associated with decreases in CD3<sup>+ </sup>and CD4<sup>+ </sup>fractions and increases in CD19<sup>+ </sup>and NK cell fractions. There was no significant association between alterations in lymphocyte distribution and air pollution exposure during the mid gestation.</p> <p>Conclusions</p> <p>PAHs and PM<sub>2.5 </sub>in ambient air may influence fetal immune development via shifts in cord blood lymphocytes distributions. Associations appear to differ by exposure in early versus late gestation.</p
    corecore