19 research outputs found

    A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function

    Get PDF
    Azobenzene photoresponsive elements can be installed on sulfonylureas, yielding optical control over pancreatic beta cell function and insulin release. An obstacle to such photopharmacological approaches remains the use of ultraviolet-blue illumination. Herein, we synthesize and test a novel yellow light-activated sulfonylurea based on a heterocyclic azobenzene bearing a push–pull system

    A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function

    Get PDF
    Azobenzene photoresponsive elements can be installed on sulfonylureas, yielding optical control over pancreatic beta cell function and insulin release. An obstacle to such photopharmacological approaches remains the use of ultraviolet-blue illumination. Herein, we synthesize and test a novel yellow light-activated sulfonylurea based on a heterocyclic azobenzene bearing a push–pull system

    Gram-scale synthesis of alkoxide-derived nitrogen-doped carbon foam as a support for Fe-N-C electrocatalysts

    Get PDF
    Non-platinum group metal (non-PGM) catalysts for the oxygen reduction reaction (ORR) are set to reduce the cost of polymer electrolyte membrane fuel cells (PEFCs), by replacing platinum at the cathode. We previously developed unique nitrogen-doped carbon foams by template-free pyrolysis of alkoxide powders synthesized using a high temperature and high pressure solvothermal reaction. These were shown to be effective ORR electrocatalysts in alkaline media. Here, we present a new optimised synthesis protocol which is carried out at ambient temperature and pressure, enabling us to safely increase the batch size to 2 g, increase the yield by 60%, increase the specific surface area to 1866 m2/g, and control the nitrogen content (between 1.0 and 5.2 at%). These optimized nitrogen-doped carbon foams are then utilized as effective supports for Fe-N-C catalysts for the ORR in acid media, whilst multiphysics modelling is used to gain insight into the electrochemical performance. This work highlights the importance of the properties of the carbon support in the design of Pt-free electrocatalysts

    Catalyzing Transformations to Sustainability in the World's Mountains

    Get PDF
    Mountain social‐ecological systems (MtSES) are vital to humanity, providing ecosystem services to over half the planet's human population. Despite their importance, there has been no global assessment of threats to MtSES, even as they face unprecedented challenges to their sustainability. With survey data from 57 MtSES sites worldwide, we test a conceptual model of the types and scales of stressors and ecosystem services in MtSES and explore their distinct configurations according to their primary economic orientation and land use. We find that MtSES worldwide are experiencing both gradual and abrupt climatic, economic, and governance changes, with policies made by outsiders as the most ubiquitous challenge. Mountains that support primarily subsistence‐oriented livelihoods, especially agropastoral systems, deliver abundant services but are also most at risk. Moreover, transitions from subsistence‐ to market‐oriented economies are often accompanied by increased physical connectedness, reduced diversity of cross‐scale ecosystem services, lowered importance of local knowledge, and shifting vulnerabilities to threats. Addressing the complex challenges facing MtSES and catalyzing transformations to MtSES sustainability will require cross‐scale partnerships among researchers, stakeholders, and decision makers to jointly identify desired futures and adaptation pathways, assess trade‐offs in prioritizing ecosystem services, and share best practices for sustainability. These transdisciplinary approaches will allow local stakeholders, researchers, and practitioners to jointly address MtSES knowledge gaps while simultaneously focusing on critical issues of poverty and food security

    Expert survey data on key challenges, drivers, and ecosystem services across mountains worldwide

    No full text
    Data are survey responses collected between 2014-2016 from experts working in 57 different mountain systems around the world, assessing threats to mountain social-ecological systems (MtSES) and the cross-scale ecosystem services MtSES provide.Mountain social-ecological systems (MtSES) are vital to humanity, providing ecosystem services to over half the planet's human population. Despite their importance, there has been no global assessment of threats to MtSES, even as they face unprecedented challenges to their sustainability. With survey data from 57 MtSES sites worldwide, we test a conceptual model of the types and scales of stressors and ecosystem services in MtSES and explore their distinct configurations according to their primary economic orientation and land use. We find that MtSES worldwide are experiencing both gradual and abrupt climatic, economic, and governance changes, with policies made by outsiders as the most ubiquitous challenge. Mountains that support primarily subsistence-oriented livelihoods, especially agro-pastoral systems, deliver abundant services but are also most at risk. Moreover, transitions from subsistence- to market-oriented economies are often accompanied by increased physical connectedness, reduced diversity of cross-scale ecosystem services, lowered importance of local knowledge, and shifting vulnerabilities to threats. Addressing the complex challenges facing MtSES and catalyzing transformations to MtSES sustainability will require cross-scale partnerships among researchers, stakeholders and decision-makers to jointly identify desired futures and adaptation pathways, assess tradeoffs in prioritizing ecosystem services, and share best practices for sustainability. These transdisciplinary approaches will allow local stakeholders, researchers and practitioners to jointly address MtSES knowledge gaps while simultaneously focusing on critical issues of poverty and food security.Ideas presented in this paper were first developed at a workshop supported by the Mountain Research Initiative (MRI), the Colorado State University (CSU) Warner College of Natural Resources, and the CSU Office of International Programs. Further support was provided by the National Science Foundation, NSF #DEB 1414106. RM was supported under the Climate Change Impacts on Ecosystem Services and Food Security in Eastern Africa (CHIESA) funded by the Ministry of Foreign Affairs of Finland
    corecore