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Abstract 

Non-platinum group metal (non-PGM) catalysts for the oxygen reduction reaction (ORR) 

are set to reduce the cost of polymer electrolyte membrane fuel cells (PEFCs) by replacing 

platinum at the cathode. We previously developed unique nitrogen-doped carbon foams 

by template-free pyrolysis of alkoxide powders synthesized using a high temperature and 

high pressure solvothermal reaction. These were shown to be effective ORR 

electrocatalysts in alkaline media. Here, we present a new optimised synthesis protocol 

which is carried out at ambient temperature and pressure, enabling us to safely increase 

the batch size to 2 g, increase the yield by 60%, increase the specific surface area to 1866 

m2/g, and control the nitrogen content (between 1.0 and 5.2 at%). These optimized 

nitrogen-doped carbon foams are then utilized as effective supports for Fe-N-C catalysts 

for the ORR in acid media, whilst multiphysics modelling is used to gain insight into the 

electrochemical performance. This work highlights the importance of the properties of 

the carbon support in the design of Pt-free electrocatalysts.  

Keywords: oxygen reduction reaction; ORR; non-PGM, platinum-free; nitrogen-doped 

carbon; Pt-free; catalyst support; Fe-N-C; template-free  
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 3 

1. Introduction 

The platinum cathode catalyst contributes significantly to the high cost of polymer 

electrolyte membrane fuel cells – up to 45% of the stack cost by some estimates.1 

Research into alternative Pt-free catalysts for the oxygen reduction reaction (ORR) has 

been underway for decades.2 The most promising non-precious catalysts are transition 

metal-containing nitrogen-doped carbon materials, generally synthesized by pyrolysis of 

various mixtures of iron, nitrogen, and carbon precursors. It is well-established that the 

final performance of such catalysts is dependent on a wide variety of different factors, 

including the proportions and ratios of the different elements, the atomic configuration of 

these elements, and in particular, the chemical environment of nitrogen and transition 

metal species in the carbon matrix. 3–11 In addition, other factors such as conductivity and 

microstructure also play an important role. All of the above factors can vary significantly 

depending on the type and ratio of precursors used, the pyrolysis temperature, the rate of 

heating during pyrolysis, the gases used in pyrolysis, and the type of support used.12–18 

 

Carbon is a commonly used support material for electrocatalysts. It can be synthesized to 

have very large surface area and controllable porosity, providing suitable passageways 

for diffusion of reactants and products.19,20 Carbon is relatively chemically inert, making 
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it resistant to many reactive species, and improving its durability in electrochemical 

devices.21 Carbon has good electrical conductivity, helping to minimize electrode 

resistance and increasing the efficiency for fuel cell applications.22 An enhanced 

understanding of the fundamental principles behind the synthesis process of carbon-based 

catalysts will enable development of better synthesis protocols and improved ability to 

scale-up production. 

 

Here we employ a specific type of carbon foam derived from the decomposition of metal 

alkoxide powders as a support material for Fe-N-C catalysts. The advantage of this class 

of carbon foam is that it can be synthesized without the need for a sacrificial template, it 

has very large surface area (up to 3000 m2/g), relatively large pore-size (>1 µm), can be 

produced at multi-gram scale, and as a “bottom-up” technique the chemical structure can 

be routinely modified.23 This type of carbon foam was first synthesized by Choucair et 

al., by solvothermal reaction between sodium and ethanol, followed by pyrolysis.24 We 

(and other researchers) showed that the solvothermal step was not required, that such 

carbon foams can be formed simply through pyrolysis of sodium ethoxide powder, and 

that it had applications such as hydrogen storage, due to the large surface area.25–27 Later 

we showed that superhydrophobic fluorinated carbon foam can be synthesized by 
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 5 

replacing ethanol with e.g. trifluoroethanol.28 Similarly, we synthesized nitrogen-doped 

carbon foams by replacing ethanol with e.g. ethanolamine.12 We went on to utilize such 

nitrogen-doped carbon foams to gain insight into the ORR in metal-free (or “no metal 

added”) non-platinum group metal (non-PGM) catalysts.13,29,30 The nitrogen content can 

be controlled by changing the amount and the type of nitrogen-source in the reaction, e.g. 

by using varying ratios of ethanol with either ethanolamine, diethanolamine, or 

triethanolamine. 

 

Here, we attempt to simplify and scale up the production of nitrogen-doped carbon foams 

by switching synthesis of the precursor alkoxide powder from a high temperature and 

high pressure solvothermal reaction (Method A), to a new ambient temperature and 

ambient pressure, solution-based reaction protocol (Method B). This change means that 

scaling up the reaction can be achieved more safely, and the costs of synthesis can be 

significantly reduced. We perform several optimization steps with the specific aim of 

increasing the surface area, increasing the yield, controlling the nitrogen content, finally 

using these tailored nitrogen-doped carbon foams as supports for effective Fe-N-C 

catalysts.  
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 6 

2. Experimental 

The catalyst precursors used in this study were synthesized via two different methods 

(Figure 1a, b). In the “solvothermal method” previously employed by our group (and 

others) (Method A), anhydrous ethanol (EtOH, Wako) and triethanolamine (TEOA, 

Aldrich) were added to a polytetrafluoroethylene-lined (PTFE-lined) high-pressure 

reactor (50 ml, Flon Industry, Japan), followed by an equimolar amount of sodium lumps 

(Aldrich). The reactor was quickly sealed, and then heated to 150 °C for 24 hours. After 

this, the vessel was cooled to room temperature and opened. Owing to additional safety 

concerns of high pressure, extra care was given to the sealing and opening of the reactor. 

The resulting nitrogen-containing sodium alkoxide powder was removed, dried under 

vacuum, and crushed in a pestle. Three different types of precursor were synthesized 

using Method A, by changing the TEOA:EtOH ratio from 1:1 to 1:3 to 1:9, in order to 

vary the nitrogen content.  

 

The new solution-based synthesis protocol (Method B) is designed to be more scalable, 

lower cost, and safer than Method A. The key difference is the use of the solvent 

tetrahydrofuran (THF, Wako), slowing down the reaction rate by decreasing the 

concentration of the reactants. A two-neck flat-bottom flask (300 ml) was used. First, air 
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 7 

was evacuated from the flask using a roughing pump, and then N2 gas flow was 

introduced through one of the necks. For safety, the reaction vessel was initially cooled 

using an ice bath. THF, EtOH and TEOA were introduced into the flask by pipette, and 

magnetically stirred, still under flowing N2. Finally, sodium lumps were added. The ice 

bath was removed once the reaction was confirmed to proceed steadily. After 72 hrs the 

sodium lumps had completely reacted with the EtOH and TEOA, leaving a yellow-brown 

sodium alkoxide solution. This was dried in a rotary evaporator to recover the THF and 

obtain a yellow-white alkoxide powder, which was then crushed in a pestle.  

The powdery sodium alkoxide precursors resulting from Method A and Method B 

were first heat treated in a box furnace at 600 ˚C for 2 hours, under nitrogen flow (75 

ml/min), to form the carbonaceous product. The heating rate of this first “structure 

forming” step was either 2, 5, or 10 ̊ C/min. The heating conditions are described in Table 

1. This carbonized product was then stirred overnight in deionized water, washed five 

times using vacuum filtration (to remove sodium-containing impurities), and then dried 

at 80 C under vacuum. The powders were then subjected to a second pyrolysis step under 

nitrogen, at either 900 or 1000 ˚C for 2 hours (75 ml/min, 5 C/min). The nitrogen-doped 

carbon (N-C) derived from Method A is labelled N-C-A(x:y)r,T, where A denotes Method 

A; x:y is the ratio TEOA:EtOH; r is the heating-rate during the first “structure-forming” 
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 8 

pyrolysis step (either 2, 5 or 10˚C/min); and T is the temperature of the second pyrolysis 

step. Likewise the materials derived from Method B are labelled N-C-B(x:y)r,T. The 

TEOA:EtOH ratio and heat treatment conditions for Method B were selected based on 

the most favorable results obtained using Method A. The Fe-N-C catalyst was then 

prepared using iron (II) acetate as an iron source (FeAc, Tokyo Chemical Industry), 

adsorbed onto the carbon foam catalyst support deemed most suitable according to the 

preceding characterization. As such, 100 mg of N-C-B (1:3)5,1000 was added to 50 ml of 

water, 14.3 mg of FeAc was added to 10 ml of water, and then these two solutions were 

mixed together and magnetically stirred for 2 hrs. This mixture was then vacuum filtered 

once to remove excess FeAc, dried under vacuum, and then heat-treated in a tube furnace 

under flowing NH3:N2 (1:19, 100 ml/min) at 900 ˚C, for 2 hours. Table 1 summarizes the 

synthesis conditions and comparison of different properties for all nitrogen-doped carbon 

samples used in this study. 

The resulting materials were characterized by field emission scanning electron 

microscopy (FE-SEM, Hitachi S-500 / FE-SEM, JEOL JSM-7001F); Brunauer Emmet 

and Teller (BET) and Barrett Joyner and Halenda (BJH) nitrogen adsorption surface area 

analysis (3 Flex Surface Characterization, Micromeritics); X-ray diffraction (XRD) with 

Cu Kα-radiation source (λ=1.54 Å, RINT-Ultima III, Rigaku Corp.); X-ray photoelectron 
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 9 

spectroscopy (XPS, PHI 5000 Versa probe (II), ULVAC); and transmission electron 

microscopy (TEM, JEM-2100HCKM, JEOL LTD., Japan).  

An automated polarization system, rotating ring-disk electrode (RRDE) set-up, and a 

three-electrode electrochemical cell were used for characterization of the electrochemical 

properties of the catalysts (Hokuto Denko Corp.;, HR-500, and HX-107, respectively). A 

carbon rod counter electrode (Hokuto Denko Corp. Ø 6 mm x 150 mm) and an Ag/AgCl 

reference electrode (HX-RAg) were used. Electrocatalyst ink was made by dispersing the 

nitrogen-doped carbon foams (5 mg) in a mix of deionized water, ethanol and 5 wt.% 

Nafion dispersion, in a volume ratio of 3:3:1. The catalyst inks were then sonicated for 

30 min using ultrasonic homogenizer (UH-600, SMT Co., Ltd.). The working electrode 

was then prepared by coating 8 µl of electrocatalyst ink onto the glassy carbon electrode, 

which was then dried at 60 ºC in air for 10 minutes. The loading density of catalyst on the 

electrode was 580 µgcatalyst/cm2.  

Electrochemistry was performed in O2 or N2 gas saturated 0.1 M HClO4 electrolyte, at 

room temperature. Cyclic voltammograms (CVs) were measured with a scan rate of 50 

mV s-1 in N2-saturated solution. All voltages are written relative to the reversible 

hydrogen electrode (RHE). Linear sweep voltammograms (LSVs) were obtained between 
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 10 

0.05 to 1.2 VRHE, at 10 mV s-1, in O2-saturated electrolyte solution at rotations of 400, 

900, 1600, and 2500 rpm. For RRDE, LSVs were plotted after subtracting the current 

measured under nitrogen-saturation, and normalization of the minimum current density 

to zero. All of the CV and LSV results are shown after 50 break-in cycles, after the 

stabilization of the activity. Onset potentials were determined from first derivatives of the 

LSV data (Fig. S6). The mass activity was calculated using the kinetic current (ik) 

obtained from the intercept of the Koutecky-Levich plot and total mass of catalyst (m): 

mass activity = ik/m. Durability measurements were performed over 60,000 start-stop 

cycles according to previously established protocols.13,31 

 
Figure 1: Different synthetic routes for production of nitrogen-doped carbon foams: (a) Method A 

(solvothermal synthesis at high temperature and pressure); and (b) Method B (solution synthesis under 

flowing nitrogen, at standard temperature and pressure). 
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3. Results and Discussion 

3.1 Product Mass and Yield 

Table 1 and Table S1 show the mass and yield of the carbon products synthesized using 

different methods and conditions. For Method A, the final product mass varies between 

160 and 540 mg, whilst the yield varies from 0.8 to 3.1%. The low yield of 1.3 % at low 

TEOA ratio (1:9) may be attributed to the low concentration and strong basic nature of 

TEOA (pH = 10) in the precursor reactants, resulting in a slower rate of deprotonation 

compared to that of ethanol (pH = 7.3). The low yield at high TEOA ratio of 1:1 could be 

due to an increase in viscosity of the solution under these conditions, complicating the 

uniform deprotonation of TEOA and EtOH. The best yield and mass are obtained for the 

sample with a TEOA:EtOH ratio of 1:3 and therefore this ratio was selected for use in 

Method B. 

Using Method B, the product mass increases to between 440 and 1200 mg, whilst the 

yield increases to between 2.5 and 7.0 %, compared with Method A. The overall increase 

in yield for Method B is largely attributed to the use of flowing nitrogen, preventing the 

formation of side-products through reaction between oxygen or humidity in the air with 

the sodium, due to temperature and kinetic effects. These results are a clear indication of 

the advantage of the new synthesis protocol, Method B. Notably, the sample formed with 
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 12 

a ramp rate of 5 º/min resulted in the highest yield, a significant improvement compared 

to heating rates of 2 and 10 º/min. This clearly indicates the importance of optimizing the 

heating rate for the second heat treatment step. 

 

Table 1: Summary of the synthesis conditions, product mass, yield, and surface area for the 

samples. *The product mass of the 2nd heat treatment step is inferred from the yield – the real 

value is approximately half of this, since the samples were divided for different heat treatment 

conditions. 

 

 
TEOA:

EtOH 

1st Step 

Ramp Rate 

(º/min) 

2nd Step 

Temperature 

(ºC) 

2nd Step 

Product 

Mass (g)* 

Final 

Yield 

(%) 

Final 

Surface 

area (m2/g) 

Sample Name 

Method 

A 

1:9 

10 

900 0.21 1.3 346 N-C-A(1:9)10,900 

1:3 
900 0.54 3.1 400 N-C-A(1:3)10,900 

1000 0.53 3.0 351 N-C-A(1:3)10,1000 

1:1 900 0.16 0.8 100 N-C-A(1:1)10,900 

Method 

B 
1:3 

10 
900 0.61 3.5 1075 N-C-B(1:3)10,900 

1000 0.58 3.3 813 N-C-B(1:3)10,1000 

5 
900 1.24 7.0 1500 N-C-B(1:3)5,900 

1000 1.20 6.8 1286 N-C-B(1:3)5,1000 

2 
900 0.46 2.7 1866 N-C-B(1:3)2,900 

1000 0.44 2.5 1620 N-C-B(1:3) 2,1000 
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3.2 Scanning Electron Microscopy (SEM) 

Figure 2 shows SEM images of nitrogen-doped carbon foams synthesized using methods 

A and B, with different nitrogen-dopant ratios. The primary particle size is uniform at ~1 

to 50 µm in all samples, which was achieved by simply grinding in a pestle, without 

energy intensive milling or sieving. All the samples have similar microstructure, with a 

3-D foam-like carbon framework. This framework is highly porous, with large spheroidal 

voids ~2 µm in diameter in most cases. The walls of these cells are extremely thin, as 

evidenced by their electron transparency, even under low accelerating voltage SEM 

electron irradiation. It should be emphasized that this porous structure results from a 

completely template-free foaming process, eliminating the need to use a hard template, 

and thus significantly reducing the cost and number of processing steps. 

Exclusively in the case of N-C-A(1:1)10,900 (Figure 2(e, f)), solid-appearing spheroidal 

carbon structures are observed instead of the usual pores, but with similar diameter to the 

pores of the other samples. These are presumed to be hollow and to effectively be 

partially-formed pores. This provides some indirect evidence that the formation of these 

porous carbons is due to a foaming process during decomposition (this foaming can also 

be observed by eye if the samples are burned in air). The size of the “bubbles” formed 
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during the foaming process therefore determines the size of the pores after carbonization. 

In the specific case of N-C-A(1:1)10,900, the TEOA ratio is relatively high, affecting the 

melting point and viscosity of the sodium alkoxide precursor. In this case, this seems to 

result in sealed hollow carbon nanoparticle bubbles, rather than the open porous structure 

of the other materials. We previously observed such hollow nanoparticles by transmission 

electron microscopy (TEM) in similar fluorinated carbon materials.28 This unusual 

microstructure will probably affect properties such as surface area and mass diffusion, 

and this sample is therefore unlikely to be suitable for use as a catalyst or catalyst support. 

This also informed the decision to use an optimized TEOA:EtOH ratio of 1:3 for Method 

B, to maximize the nitrogen content in the final product whilst retaining the open porous 

network.  

The materials synthesized using Method B (Fig. 2g-j) have similar particle size 

distribution and porous structure as those using Method A. This confirms that despite 

increasing the scale of production by ~60 %, and using a safer / less energy intensive 

process, the same general structure can be obtained. It also confirms the high 

reproducibility of materials produced using this technique, despite the different precursor 

ratios, pyrolysis conditions, and synthesis methods. The pore size in N-C-B(1:3)5,1000 (Fig. 

2 (i, j)) appears to be much smaller (i.e. ~250-500 nm) than in N-C-B(1:3)2,1000 (Fig. 2 (g, 
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h)). This is attributed to the increase in heating rate in the first “structure-forming” step, 

again changing the way in which the sodium alkoxides precursor melts, foams and 

decomposes. Having smaller pores is expected to improve the volumetric activity of any 

resulting catalyst, and therefore is more desirable. Figure 3 shows a typical low-

magnification SEM image of one of the catalysts. This also highlights the highly uniform 

and reproducible nature of the carbon powders synthesized using this technique. 
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Figure 2: SEM images of: (a, b) N-C-A(1:9)10,900 ; (c, d) N-C-A(1:3) 10,900 ; (e, f) N-C-A(1:1)10,900 ; (g, h) N-

C-B(1:3)2,1000 ; and (i, j) N-C-B(1:3)5,1000 , at two different magnifications. 
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Figure 3: Low magnification SEM image of carbon foam catalyst sample N-C-B(1:3)5,1000, which is 

representative of all the samples studied here. 

 

3. 2 Surface Area and Porosity 

The porosity and surface areas of the different nitrogen-doped carbon foams (Table 

1) were determined from the adsorption/desorption isotherms in Figure 4 (a) and Figure 

S3. For Method A, the measured surface areas are 346, 400, 351 and 100 m2g-1 (average: 

299 m2g-1) for N-C-A(1:9)10,900, N-C-A(1:3)10,900, N-C-A(1:3)10,1000, and N-C-A(1:1)10,900, 

respectively. Despite the changing TEOA:EtOH ratio, the first three samples have similar 

surface area. However, N-C-A (1:1)10,900 has significantly lower surface area, which is 

Page 17 of 45 AUTHOR SUBMITTED MANUSCRIPT - NANO-123774.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60 A
cc

ep
te

d 
M

an
us

cr
ip

t



 18 

attributed to the spherical closed-cell structures observed by SEM, preventing infiltration 

of nitrogen gas to the interior, and thus lowering the accessible surface area. In the case 

of the more open porous structures, nitrogen can access every surface. This further 

influenced the decision to use a ratio of 1:3 in Method B, to combine the relatively high 

nitrogen content with reasonable surface area.  

 

The samples synthesized using Method B have a much higher average surface area of 

1360 m2g-1. This clearly shows that Method B is an improved synthesis method. There is 

a trend of increasing surface area with decreasing ramp rate with average surface areas of 

944, 1393, and 1743 m2g-1 for ramp rates of 10, 5, and 2 º/min, respectively. This may be 

connected to the amount of time available for micropore formation during the 

carbonization process when a lower ramp rate is used. There is also a decrease in surface 

area when a higher temperature is used in the second pyrolysis step, which is commonly 

observed for carbon.  

 

The International Union of Pure and Applied Chemistry (IUPAC) defines micropores 

as having pore diameters less than 2 nm; mesopores as having pore diameters between 2 

and 50 nm; and macropores as having pore diameters greater than 50 nm. Most of the 
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isotherms here have Type I(a) characteristics, indicating microporous materials with 

narrow micropores (of <1 nm). The inflection at ~1 MPa indicates a Type II isotherm 

contribution, indicating non-porous or macroporous regions of the sample, which may 

correspond to the surfaces of the large micron-scale macropores observed by SEM.32,33 

In addition, Type H4 hysteresis loops are observed in the Method B samples, which 

indicate a micro-mesoporous nature, normally associated with micropore filling in micro-

mesoporous carbons, providing further evidence of their micro-mesoporous nature. The 

exception is N-C-A(1:1)10,900 which has a Type III isotherm associated with non-porous 

or microporous solids, reflecting the unusual closed-cell morphology as observed by 

SEM.33,34  

 

The presence of micropores is supported by the MP method analysis shown in Figure 

4 (b), where Vp is the pore volume, and rp is the pore radius. The peak pore radius ranges 

from 0.65 to 0.80 nm in all cases. Method A results in lower micropore volume compared 

to Method B, in agreement with the lower BET surface area. In the case of N-C-

A(1:1)10,900 the micropore volume is very small, suggesting that nitrogen adsorption 

occurs mostly over the external surface area of the closed-cells,34 in agreement with the 

Type II isotherm and the SEM images.  
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The BJH pore size distributions are plotted in Figure S4, highlighting the meso- and 

macropore ranges. The maximum observable pore size using this technique is ~100 nm, 

so the micron-scale macropores seen in the SEM images are not manifested in this data. 

The mesopore distribution is remarkably similar in all the samples. There is a small peak 

at a pore radius of ~35 nm in all cases. Meanwhile, the majority of pores have a radius of 

less than 10 nm, in agreement with the MP-plots.  

 

In summary of the surface area and porosity data, these materials have broad 

distributions of micropores (highlighted by the MP method), mesopores (shown in the 

BJH data), and the macropores observed by SEM. Method B results in larger micro- and 

mesopore volume. Since the surface area, porosity, and pore connectivity have a 

significant influence on the accessibility of catalytic active sites, it is expected from the 

above results that Method B would be most suited to electrochemical applications. 
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Figure 4: (a) BET surface area, (b) MP-plots, (c) normalized N 1s deconvolution of the XPS spectra, 

and (d) XRD spectra of the samples. 

 

3.3. X-ray Photoelectron Spectroscopy (XPS) 

Figure S1 shows XPS wide-scans of all the samples, and the elemental compositions are 

summarized in Table 2. The XPS surveys for all samples show a predominant C 1s peak 

at ̴284.5 eV, an O 1s peak at ̴532 eV, and an N 1s peak at ̴398.2 eV. In the catalysts 
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synthesized using Method A, the final nitrogen content increases with increasing 

TEOA:EtOH ratio, from 2.0 to 2.9 to 4.3 wt%. This is as expected, correlating with the 

amount of nitrogen in the precursor, and showing that this synthesis method is suitable 

for tailoring the nitrogen-content of the carbon foams.  

 

For Method B, the nitrogen content increases as the ramp rate increases (saturating at 

about 3.5 wt%), suggesting that more nitrogen is lost from the sample when the pyrolysis 

process is slower/longer, as expected. The oxygen content is significantly lower for 

Method B compared to Method A, suggesting that performing the reaction under nitrogen 

atmosphere helps to suppress the incorporation of oxygen-containing surface functional 

groups, and/or results in less adsorbed water on the surface (possibly due to enhanced 

hydrophobicity). There is a significant difference in residual sodium content depending 

on whether the second pyrolysis step is performed at 900 or 1000 ºC, for both Method A 

and Method B. This could be attributed to heating the sample to well above the boiling 

point of sodium (882.8 ºC); and/or the decomposition/reaction of residual NaOH and 

NaCO3 to form Na and CO2 at elevated temperature.  
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The pyrrolic, pyridinic, and graphitic C-N bonds observed in the deconvolution of the N 

1s peak (Figure (4c)) confirm that nitrogen atoms were successfully doped into the carbon 

matrix. All the samples have remarkably similar profiles, further highlighting the 

reproducibility and consistency of these different synthesis protocols. Peak fitting mainly 

reveals the presence of pyridinic (~398.2 eV); pyrrolic (~399.3 eV), and graphitic / 

tertiary (400.8 eV) nitrogen, as well as oxygen-coordination peaks (> 402 eV).35 The ratio 

of graphitic nitrogen to pyridinic nitrogen is 1.2 ± 0.2 in all cases. The one exception is 

N-C-B2 (1:3), which has a much lower nitrogen content (attributed to the slower heating 

rate), resulting in a low signal to noise ratio, and thus preventing realistic peak fitting. 

The high proportion of pyridinic species in these samples are expected to provide suitable 

sites for Fe coordination in the final section of this study.  
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Table 2: XPS analysis of the materials used in this study after the 1st (black text) and 2nd (red text) 

pyrolysis steps. 

 

 

 

 

 

 

 

 

 

3.4 X-ray Diffraction (XRD) 

Figure 4 (d) shows XRD spectra for the samples. These are all almost identical, with a 

broad diffraction peak at 22º, which corresponds to typical (002) interlayer spacing of 0.4 

nm for amorphous or nitrogen-doped carbons36,37. A smaller peak centered at 44º is 

associated with the (100) in-plane hexagonal atomic arrangement of sp2 carbon (i.e., 0.2 

nm). 

 

 

 

Sample Name 

XPS (wt. %) 

C N O Na 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 

N-C-A(1:9)10,900 73.5 73.7 3.7 2.0 19.2 21.3 3.6 3.0 

N-C-A(1:3)10,900 76.4 79.5 4.9 2.9 16.0 15.9 2.7 1.7 

N-C-A(1:3)10,1000 76.4 90.0 4.9 3.5 16.0 5.5 2.7 0.8 

N-C-A(1:1)10,900 62.8 65.9 6.3 4.3 24.6 22.1 6.3 7.7 

N-C-B(1:3)10,900 - 90.4 - 3.8 - 4.0 - 1.7 

N-C-B(1:3)5,900 72.5 77.8 6.7 5.2 14.9 11.0 5.9 5.9 

N-C-B(1:3)2,900 76.3 82.5 1.7 1.8 15.4 10.0 6.6 5.7 

N-C-B(1:3)10,1000 - 92.0 - 3.4 - 3.5 - 1.0 

N-C-B(1:3)5,1000 72.5 92.6 6.7 3.4 14.9 3.7 5.9 0.4 

N-C-B(1:3)2,1000 76.3 88.6 1.7 1.0 15.4 10.3 6.6 0.1 
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3.5 Electrochemical Characterization 

In order to gauge the suitability of these nitrogen-doped carbon materials as supports for 

Fe-N-C catalysts, or even as “metal-free” (or “no metal added”) catalysts in their own 

right, electrochemical analysis was performed. Cyclic voltammograms (CVs) measured 

in N2 are shown in Figure 5 (a). These quasi-rectangular traces are typical for carbon 

materials with large surface area. The area within the plots for carbons synthesized using 

Method A are relatively small, corresponding to low double layer capacitance, in turn 

reflecting the relatively low surface area of these samples as measured by BET. Most of 

the sample’s plots have similar area. However, two samples fabricated using Method B 

(i.e. N-C-B(1:3)2,1000 and N-C-B(1:3)5,1000) have much larger areas within the CV curves, 

suggesting higher double layer capacitance as a result of the much larger surface area. At 

potentials around 0.4 VRHE and 0.65 VRHE small peaks are observed in some of the plots, 

suggesting that oxygen-containing functional groups on the surface are undergoing redox 

transitions. Interestingly, sample N-C-A(1:1)10,900 has lower capacitance, in agreement 

with the lower surface area and the unusual structure observed by SEM. 

 

Figure 5 (b) shows linear sweep voltammograms measured in O2 (after N2 trace 

subtraction). Some activity for the oxygen reduction reaction is observed in all samples. 
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Nitrogen-doped carbons are already well-known to be ORR active even in the absence of 

iron or other transition metals.38 However, this is usually attributed to production of 

hydrogen peroxide followed by reduction to water, in a 2+2 electron transfer step, rather 

than a direct 4 electron transfer which is preferred for use in practical applications.39,10 

For samples synthesized using Method A, the electrochemical current densities are all 

relatively low, reflecting the low surface area. The highest ORR activity for samples 

synthesized using Method A was N-C-A(1:3)10,1000, and this informed the decision to 

choose the ratio of TEOA:EtOH = 1:3 for use in Method B. For samples synthesized 

using Method B, the highest ORR current density is observed for N-C-B (1:3)5,1000, with 

very low ORR activity for the other samples. The large difference in LSV performance 

based only on the change in the heating rate in Method B is striking. This may reflect the 

higher oxygen content in N-C-B (1:3)2,1000 as observed in XPS (also associated with the 

REDOX couple observed in the CV plots); the poor pore connectivity in N-C-B 

(1:3)10,1000 as inferred from the lower mass limited current density; the smaller pore size 

of N-C-B (1:3)5,1000 as observed in SEM; or the higher nitrogen content of N-C-

B(1:3)5,1000 as measured using XPS, potentially providing a higher density of metal-free 

ORR active sites. Despite these metal-free nitrogen-doped carbons not having sufficient 

activity to be useful catalysts in their own right, this electrochemical data suggests that            
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N-C-B (1:3)5,1000 could be a suitable support material for the synthesis of Fe-N-C catalysts. 

This will be explored further in the following section.  
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Figure 5: (a) Cyclic voltammograms (CVs), and (b) linear sweep voltammograms (LSVs) 

of the nitrogen-doped carbon foam materials. 

 

3.6 Fe-N-C Electrocatalyst Synthesis 

The most suitable candidate for use as an Fe-N-C support for electrocatalysis was selected 

with regards to optimized yield, nitrogen content, surface area, and electrochemical 

response, i.e. N-C-B (1:3)5,1000 (herein re-named simply as N-C). As such, FeAc was 

infiltrated onto this nitrogen-doped carbon foam support, and then pyrolysis was carried 

out in NH3 atmosphere, according to established protocols previously developed by 

Dodelet et al.9,40 This Fe-N-C catalyst is compared with a commercially-sourced non-
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PGM catalyst benchmark also based on a carbon, nitrogen and iron structure (NPC-2000, 

Pajarito Powder, transition metal content ~0.7%; nitrogen content 3.0%).38 

The microstructure of the Fe-N-C catalyst is shown in the SEM images in Figure 6. The 

foam-type structure is retained, and the SEM images at low magnification are similar, as 

expected. However, at higher magnification, Figure 6(b), nanoparticles can be seen 

decorating the surface. In some regions, agglomerations of nanostructures are observed 

(Figure 6(c)), including carbon nanotubes grown via the catalytic action of Fe at elevated 

temperature.41,42 Figure 6 (d) shows a higher magnification image of some of the 

nanoparticles, revealing a bright iron core encapsulated by carbon. The TEM image in 

Figure 6(e) shows a metallic Fe nanoparticle size of ~30 nm diameter. This is 

encapsulated by a few layers of graphitized carbon with a lattice spacing of ~0.35 nm, 

which is slightly larger than that of graphite (i.e. 0.335 nm). Selected area electron 

diffraction (SAED, Figure (6f)) confirmed that the nanoparticle core is metallic Fe, and 

the shell is graphitized carbon. 
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Figure 6: (a-d) SEM and (e, f) SAED and TEM images of the Fe-N-C catalyst. 

 

The surface area of the Fe-N-C catalyst is 1600 m2g-1, as measured by BET, Figure (S5). 

Surprisingly, this is an increase compared to the un-decorated N-C support (1286 m2g-1).  

Fe-N-C has mixed Type I, Type II and Type H4 isotherms indicating a micro-mesoporous 

carbon with macroporous characteristics.33,43 The total pore volume of N-C increases 

from 0.64 to 0.77 cm3/g; the micropore volume does not significantly change; and the 

100 nm1 µm

100 nm1 µm

10 nm1/0.17 nm
20 nm
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mesopore volume increases from 0.12 to 0.26 cm3/g after Fe decoration and heat 

treatment in ammonia (Table S2). This increase in surface area and porosity is attributed 

to the creation of additional carbon nanostructures as observed in Figure 6, and the action 

of NH3 on the support, which is known to increase porosity. Meanwhile, the commercial 

NPC-2000 catalyst has a Type IV isotherm and a Type H1 hysteresis curve, strongly 

indicating a largely mesoporous material.33 This clearly shows that the Fe-N-C and NPC-

2000 materials are fundamentally different in microstructure. 

 

The electrochemical performance of the Fe-N-C electrocatalyst using the optimized 

carbon support is summarized in Figure 7 and Table 3, and compared with the support 

material (N-C); platinum-decorated carbon black (Pt/C); and the NPC-2000 benchmark. 

This graph shows that the initial activity of the Fe-N-C catalyst using optimized nitrogen-

doped carbon foam supports is reasonably high, with an onset potential of 0.88 VRHE, a 

half-wave potential of 0.68 VRHE, a mass diffusion limited current density of -5.5 mA/cm2, 

a mass activity of 11.8 A/g (at 0.8 VRHE); and an electron transfer number of 3.75 (Figure 

S8). The initial activity of Fe-N-C is slightly higher than the as-received NPC-2000 

commercial catalyst, which has similar onset potential of 0.88 VRHE, similar half-wave 

potential of 0.68 VRHE, lower mass diffusion limited current density of -5.1 mA/cm2; and 
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slightly higher electron transfer number. These measured values are slightly lower than 

those reported in the literature for NPC-2000,44 which may be due to deactivation of the 

catalyst through exposure to oxygen and/or high atmospheric humidity levels, or 

differences in measurement protocols. 

In general, the active sites are believed to largely reside in micropores, whilst mesopores 

contribute to enhanced mass transport.45 As such, the co-existence of meso- and 

micropores in a suitable ratio has been reported to enhance mass diffusion in in activated 

carbon-based electrocatalysts.43,46,47 Here, the mesopore to micropore volume ratios for 

Fe-N-C and NPC-2000 are 0.5 and 2, respectively, contrary to expected values for 

enhanced mass transport. Therefore, the improved mass transport in Fe-N-C must 

attributed to a different factor such as: the much larger total surface area (1607 vs 775 

m2/g); the higher mesopore/external surface area (656 vs 256 m2/g); the higher 

microporous surface area (951 vs 519 m2/g); the higher total pore volume (0.77 vs 0.70 

cm3/g).  

 

 

The durability of these Fe-N-C catalysts against carbon corrosion was investigated using 

start-stop potential cycling (Figure S9). Whilst the initial activity of these catalysts is 
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promising, they quickly degrade under start-stop potential cycling. This may be due to 

the relatively amorphous nature of the carbon foam support (as observed by XRD), and/or 

the relatively high iron content, leading to carbon corrosion via the action of hydrogen 

peroxide. As such, in future work the iron loading will be optimised in future work. 

 

However, the main conclusion of these electrochemical experiments is that careful 

optimization and selection of nitrogen-doped carbon foam supports can result in high-

performance Fe-N-C electrocatalysts. This is attributed to high nitrogen content in the 

support, the large surface area, the large pore volume for effective mass diffusion, and 

screening of the metal-free supports using cyclic voltammetry. Another important 

conclusion of this work is that it is possible to decouple the introduction of nitrogen atoms 

in the support material and the introduction of iron atoms without compromising ORR 

activity. This is an advantage in comparison with more generalized Fe-N-C catalyst 

synthesis protocols in which the nitrogen and iron atoms are introduced in the same step. 

As such, this new protocol for synthesis of nitrogen-doped carbon foam supported Fe-N-

C electrocatalysts could have important implications in the design and optimisation of 

new electrocatalysts. 
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Figure 7: Linear sweep voltammograms (LSVs) of the Fe-N-C catalyst, compared with the support 

material N-C, NPC-2000 (Pajarito Powder), and Pt/C. 

 

Table 3: Comparison of the electrochemical performance of the synthesized catalysts with conventional 

catalysts. 

 

Onset 

Potential 

(VRHE) 

Half-Wave 

Potential 

(VRHE) 

Mass Diffusion 

Limited Current 

Density (mA/cm2) 

Mass Activity 

(A/g @ 0.8 

VRHE) 

N-C 0.7 0.5 -4.2 0 

Fe-N-C 0.88 0.68 -5.56 11.8 

NPC-2000 0.88 0.68 -5.11 11.4 

Pt/C 1.03 0.8 -5.91 70 

 

3.7 Numerical Modelling 

As discussed above, the difference in mesopore volume did not sufficiently explain the 

relatively high mass diffusion limited current density in the Fe-N-C sample. The very 
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large total surface area and increased total porosity were instead proposed as possible 

contributing factors. As such, the effect of surface area on mass transport was investigated 

using a simple model. To investigate the effect of microstructure on gas diffusion and 

mass transport through the electrocatalyst layer, two simple computational models were 

developed corresponding loosely to Fe-N-C and NPC-2000. A simple square symmetry 

approximation of the materials was made, based on physical characterization of the 

respective catalysts. The main physical difference between the different materials is the 

surface area, and this is reflected in the simulation. Since the surface area of Fe-N-C is 

approximately twice that of NPC-2000, the model takes this into account by changing the 

thickness of the carbon walls. As such, Fe-N-C is modelled with a primary pore size of 

1000 nm, a wall thickness of 5 nm, a window size of 200 nm; and an electrocatalyst layer 

thickness of 11 µm. Meanwhile, NPC-2000 is modelled to have a primary pore size of 

100 nm, a wall thickness of 10 nm, a window diameter of 20 nm, and an electrocatalyst 

layer thickness of 11 µm (Figure 8). The purpose of this calculation is to see how diffusive 

each structure is, so the only equation solved was for the conservation of mass for oxygen:  

 ∇𝐷∇𝐶𝑂2 = 0 (1) 

where 𝐶𝑂2  is the molar concentration of oxygen and 𝐷 is the diffusion coefficient of 

oxygen (2.2 × 10-5 m2/s). The boundary conditions used for the models are: a specified 
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concentration, calculated at 20°C and 1 bar, at the top edge of the domain; a convective 

flux, with a mass transfer coefficient of 1 m/s, at the bottom edge of the domain; and zero 

flux for the two sides of the domain. Equation (1) was solved using a finite element 

software, COMSOL Multiphysics® 5.2a. The computational domains were discretised 

and refined until mesh-independent solutions were obtained.  

 

Figure 8 (c) and (d) show the respective distributions of oxygen concentration. For the 

given parameters and boundary conditions, the diffusion fluxes at the “outlet” of the 

electrocatalyst layers (i.e. the bottom edges of the domains) were calculated to be 7.43 

and 7.16 mol/m2/sec, respectively, representing a difference of around 4%. This confirms 

that mass diffusion is faster through the structure with a larger pore-to-wall thickness ratio, 

and this enhanced diffusion of oxygen could be one of the factors contributing to the 

higher mass transport limited current density observed in the experimental LSVs.  

 

Whilst this simulation shows that surface area may have some influence on mass diffusion, 

this is only one of several potentially important factors. In future the model will be refined 

to investigate in more detail the accessibility of micropores and mesopores, the ratio of 

mesopores to micropores, and more fine-grained simulation of the microstructure.  
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Figure 8: Meshed geometries for simulated approximations of (a) Fe-N-C and (b) NPC-2000 catalysts. For 

(a) the wall thickness is 5 nm, the pore size is 1 µm, and the window size is 200 nm. For (b) the wall 

thickness is 10 nm, the pore size is 100 nm and the window size is 20 nm. (c) and (d) show the simulated 

distribution of the molar oxygen concentration in Fe-N-C and NPC-2000, respectively. 

 

Summary and Conclusions 

In summary, we investigated how optimization of the carbon support can be used to 

improve the design of Fe-N-C ORR electrocatalysts. Template-free nitrogen-doped 

carbon foams with large surface area were developed using two different precursor 

synthesis protocols. Method A was a high pressure and high temperature solvothermal 

method previously demonstrated by our group. Method B was an ambient temperature-

and-pressure solution-based method designed to make the process cheaper, more scalable, 

and safer. Method B successfully replicated the pore-structure of Method A, but increased 
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the surface area dramatically from ~500 to ~2500 m2/g. The ratio of TEOA in the reaction 

was used to control the nitrogen content, surface area and microstructure of the final 

product. The heating rate during the first pyrolysis step was also found to dramatically 

affect the material properties. These support materials were then screened according to 

their electrochemical behaviour, and the most suitable was selected as a support for an 

Fe-based non-PGM catalyst, using FeAc as an iron source. The resulting catalyst had 

similar onset potential and mass activity, and slightly increased mass transport limited 

current density to a commercially-available non-PGM catalyst, NPC-2000. The efficient 

mass transport was attributed to the large pore-diameter-to-wall-thickness ratio in our 

samples, using multiphysics simulations. These results confirm that careful optimization 

and selective design of the pore size, surface area, nitrogen content, and heating rate of 

carbon-based supports can result in highly active Fe-N-C catalysts. In future work, we 

will further develop and optimize these supports to seek further improvements in activity, 

as well as performing durability studies and full cell testing.   
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