19 research outputs found

    The rate of natural killer cells and their cytotoxic activity in patients with advances pharyngeal and laryngeal cancer

    Get PDF

    Gram-scale synthesis of alkoxide-derived nitrogen-doped carbon foam as a support for Fe-N-C electrocatalysts

    Get PDF
    Non-platinum group metal (non-PGM) catalysts for the oxygen reduction reaction (ORR) are set to reduce the cost of polymer electrolyte membrane fuel cells (PEFCs), by replacing platinum at the cathode. We previously developed unique nitrogen-doped carbon foams by template-free pyrolysis of alkoxide powders synthesized using a high temperature and high pressure solvothermal reaction. These were shown to be effective ORR electrocatalysts in alkaline media. Here, we present a new optimised synthesis protocol which is carried out at ambient temperature and pressure, enabling us to safely increase the batch size to 2 g, increase the yield by 60%, increase the specific surface area to 1866 m2/g, and control the nitrogen content (between 1.0 and 5.2 at%). These optimized nitrogen-doped carbon foams are then utilized as effective supports for Fe-N-C catalysts for the ORR in acid media, whilst multiphysics modelling is used to gain insight into the electrochemical performance. This work highlights the importance of the properties of the carbon support in the design of Pt-free electrocatalysts

    Catalyzing Transformations to Sustainability in the World's Mountains

    Get PDF
    Mountain social‐ecological systems (MtSES) are vital to humanity, providing ecosystem services to over half the planet's human population. Despite their importance, there has been no global assessment of threats to MtSES, even as they face unprecedented challenges to their sustainability. With survey data from 57 MtSES sites worldwide, we test a conceptual model of the types and scales of stressors and ecosystem services in MtSES and explore their distinct configurations according to their primary economic orientation and land use. We find that MtSES worldwide are experiencing both gradual and abrupt climatic, economic, and governance changes, with policies made by outsiders as the most ubiquitous challenge. Mountains that support primarily subsistence‐oriented livelihoods, especially agropastoral systems, deliver abundant services but are also most at risk. Moreover, transitions from subsistence‐ to market‐oriented economies are often accompanied by increased physical connectedness, reduced diversity of cross‐scale ecosystem services, lowered importance of local knowledge, and shifting vulnerabilities to threats. Addressing the complex challenges facing MtSES and catalyzing transformations to MtSES sustainability will require cross‐scale partnerships among researchers, stakeholders, and decision makers to jointly identify desired futures and adaptation pathways, assess trade‐offs in prioritizing ecosystem services, and share best practices for sustainability. These transdisciplinary approaches will allow local stakeholders, researchers, and practitioners to jointly address MtSES knowledge gaps while simultaneously focusing on critical issues of poverty and food security

    Enhancement of analyte atomic lines with excitation energies of about 5 eV in the presence of molecular gases in analytical glow discharges

    No full text
    Small amounts of hydrogen or oxygen in either argon or neon plasmas cause previously unexplained enhanced excitation of various analyte atomic lines with upper energies close to 5 eV. We suggest this enhancement is due to three body collisions involving two hydrogen or oxygen atoms and a sample atom

    Polymorphisms in GNMT and DNMT3b are associated with methotrexate treatment outcome in plaque psoriasis

    Full text link
    Methotrexate is used as first-line treatment of moderate to severe psoriasis. Despite the marked variability in treatment outcomes, no pharmacogenetic markers are currently used for personalised management of therapy. In this retrospective study, we investigated the effects of genetic predisposition on efficacy and toxicity of low-dose methotrexate in a cohort of 137 patients with moderate to severe plaque psoriasis. We genotyped 16 polymorphisms in genes for enzymes involved in the folate-methionine pathway and in methotrexate transport, and analysed their association with treatment efficacy and toxicity using classification and regression tree analysis and logistic regression. The most pronounced effect observed in this study was for GNMT rs10948059, which was identified as a risk factor for inadequate efficacy leading to treatment discontinuation. Patients carrying at least one variant allele had ~7-fold increased risk of treatment failure compared to patients with the wild-type genotype, as shown by the classification and regression tree analysis and logistic regression (odds ratio [OR], 6.94p = 0.0004). Another risk factor associated with insufficient treatment responses was DNMT3b rs2424913, where patients carrying at least one variant allele had a 4-fold increased risk of treatment failure compared to patients with the wild-type genotype (OR, 4.10p = 0.005). Using classification and regression tree analysis, we show that DNMT3b rs2424913 has a more pronounced role in patients with the variant GNMT genotype, and hence we suggest an interaction between these two genes. Further, we show that patients with the BHMT rs3733890 variant allele had increased risk of hepatotoxicity (OR, 3.17p = 0.022), which is the most prominent reason for methotrexate discontinuation. We also show that variants in the genes for methotrexate transporters OATP1B1 (rs2306283/rs4149056 SLCO1B1 haplotypes) and ABCC2 (rs717620) are associated with increased risk of treatment failure. The associations identified have not been reported previously. These data suggest that polymorphisms in genes for enzymes of the methionine cycle (which affect cell methylation potential) might have significant roles in treatment responses to methotrexate of patients with psoriasis. Further studies are warranted to validate the potential of the pharmacogenetic markers identified

    Polymorphism in gene for ABCC2 transporter predicts methotrexate drug survival in patients with psoriasis

    Full text link
    Background and Objectives: Methotrexate is widely prescribed for the treatment of moderateto-severe psoriasis. As drug survival encompasses efficacy, safety, and treatment satisfaction, such studies provide insights into successful drug treatments in the real-life scenario. The objective was to define methotrexate drug survival and reasons for discontinuation, along with factors associated with drug survival, in a cohort of adult patients with moderate-to-severe plaque psoriasis. Materials and Methods: Data on methotrexate treatment were extracted from our institutional registry. Drug survival was estimated by Kaplan–Meier analysis, and predictors of drug survival were analyzed by Cox proportional hazards regression. Results: We included 133 patients treated with methotrexate. Due to significant effects of the year of treatment initiation, drug survival analysis was performed for 117 patients who started methotrexate in 2010 or later. Median methotrexate drug survival was 11.0 months. Overall, 89% of patients discontinued treatment, with over half of these (51%) due to lack of efficacy. Significantly longer drug survival was seen for patients who discontinued treatment due to lack of efficacy versus drug safety (p = 0.049)when stratified by sex, this remained significant only for women (p = 0.002). The patient ABCC2 rs717620 genotype was significantly associated with drug survival in both univariate log-rank and multivariate Cox regression analyses, with variant T allele associated with longer drug survival (hazard ratio, 0.60695% confidence interval, 0.380–0.967p = 0.036). Conclusions: We have identified the novel association of patient ABCC2 rs717620 genotype with methotrexate drug survival. This pharmacogenetic marker might thus help in the management of psoriasis patients in daily practice
    corecore