55 research outputs found

    Antibacterial activity of Capsicum extract against selected strains of bacteria and micromycetes

    Get PDF
    One of traditional plant that has so many pharmacology effects is chilli fruit (Capsicum sp.) that belong to the family Solanaceae. Around the world is known five varieties of Capsicum which are C. annuum, C. frutescens, C. chinense, C. baccatum, and C. pubescens. Chilli peppers are known for causing the sensation of heat or burning when consumed. The heat sensation is incited by the type and the amount of a group of capsaicinoids, the alkaloids found only in chilli pepper pods. The HPLC method was used for determination of capsaicin and dihydrocapsaicin content in various dried peppers from genera C. chinense. Based on the results of HPLC the hottest pepper has been Bhut Jolokia, followed by Habanero Red Savina, Fatalii Yellow, Habanero Paper Latern, Habanero Maya Red, Habanero Red, and Scotch Bonnet Red. The inhibitory effect of the extract of Capsicum chinense pepper type was evaluated, using dics diffusion method, against selected bacteria and micromycetes. Extracts from Bhut Jolokia, Fatalii Yellow, Scotch Bonnet Red and habaneros did not inhibit growth of the any bacteria and micromycetes included in our test

    Flavonoid glycosides from endemic bulgarian astragalus aitosensis (Ivanisch.)

    Get PDF
    © 2019 The Author(s). Background: The activity and haemolytic toxicity associated with primaquine has been linked to its reactive metabolites. The reactive metabolites are thought to be primarily formed through the action of cytochrome P 450 -mediated pathways. Human erythrocytes generally are not considered a significant contributor to drug biotransformation. As erythrocytes are the target of primaquine toxicity, the ability of erythrocytes to mediate the formation of reactive oxidative primaquine metabolites in the absence of hepatic enzymes, was evaluated. Methods: Primaquine and its enantiomers were incubated separately with human red blood cells and haemoglobin. Post-incubation analysis was performed with UPLC-MS/MS to identify products of biotransformation. Results: The major metabolite detected was identified as primaquine-5,6-orthoquinone, reflecting the pathway yielding putative active and haematotoxic metabolites of primaquine, which was formed by oxidative demethylation of 5-hydroxyprimaquine. Incubation of primaquine with haemoglobin in a cell-free system yielded similar results. It appears that the observed biotransformation is due to non-enzymatic processes, perhaps due to reactive oxygen species (ROS) present in erythrocytes or in the haemoglobin incubates. Conclusion: This study presents new evidence that primaquine-5,6-orthoquinone, the metabolite of primaquine reflecting the oxidative biotransformation pathway, is generated in erythrocytes, probably by non-enzymatic means, and may not require transport from the liver or other tissues

    Efficient Electrical Spin Splitter Based on Nonrelativistic Collinear Antiferromagnetism

    Get PDF
    Electrical spin-current generation is among the core phenomena driving the field of spintronics. Using {\em ab initio} calculations we show that a room-temperature metallic collinear antiferromagnet RuO2_2 allows for highly efficient spin-current generation, arising from anisotropically-split bands with conserved up and down spins along the N\'eel vector axis. The zero net moment antiferromagnet acts as an electrical spin-splitter with a 34^\circ propagation angle between spin-up and spin-down currents. Correspondingly, the spin-conductivity is a factor of three larger than the record value from a survey of 20,000 non-magnetic spin-Hall materials. We propose a versatile spin-splitter-torque concept utilizing antiferromagnetic RuO2_2 films interfaced with a ferromagnet.Comment: 6 pages, 4 figure

    Temperature-dependent resistivity and anomalous Hall effect in NiMnSb from first principles

    Get PDF
    © 2019 American Physical Society. We present implementation of the alloy analogy model within fully relativistic density-functional theory with the coherent potential approximation for a treatment of nonzero temperatures. We calculate contributions of phonons and magnetic and chemical disorder to the temperature-dependent resistivity, anomalous Hall conductivity (AHC), and spin-resolved conductivity in ferromagnetic half-Heusler NiMnSb. Our electrical transport calculations with combined scattering effects agree well with experimental literature for Ni-rich NiMnSb with 1-2% Ni impurities on Mn sublattice. The calculated AHC is dominated by the Fermi surface term in the Kubo-Bastin formula. Moreover, the AHC as a function of longitudinal conductivity consists of two linear parts in the Ni-rich alloy, while it is nonmonotonic for Mn impurities. We obtain the spin polarization of the electrical current P>90% at room temperature and we show that P may be tuned by chemical composition. The presented results demonstrate the applicability of an efficient first-principles scheme to calculate temperature dependence of linear transport coefficients in multisublattice bulk magnetic alloys

    Organosulfur compounds of garlic (Allium sativum).

    No full text
    This bachelor thesis is focused on organosulfur compounds of garlic (Allium sativum). The theoretical part describes the genus Allium, organosulfur compounds of garlic, their precursors as well as their formation pathways. The experimental part was focused on the optimalization of an HPLC/PDA method for the isolation of the selected group of organosulfur compounds, i.e. ajothiolanes. This part also describes the preparation of four different samples that were used for HPLC/PDA analysis. The suitability of these samples for isolation of ajothiolanes was analyzed by using HPLC/MS

    Feasibility of Fraction Collection in HPLC Systems with Evaporative Light Scattering Detector: Analysis of Pectinatella magnifica

    No full text
    The use of a liquid chromatography (LC) splitter inserted between an HPLC column and an evaporative light scattering detector (ELSD) is described. This paper aims to show the feasibility of using the splitter in an HPLC-ELSD system to fractionate a model mixture of analytes, namely salicin (2-(hydroxymethyl)-phenyl-β-d-glucopyranoside) and glucose. The retention factors and efficiency of the separation were studied under various temperatures and water contents in the mobile phase in order to clarify the mechanism of polyols separation on a diol column under the conditions of hydrophilic liquid chromatography (HILIC). Finally, the system was applied to a biological sample (a lyophilized colony gel of Pectinatella magnifica), where the presence of fructose and glucose was confirmed
    corecore