9 research outputs found

    Propagation of gravity waves and spread F in the low-latitude ionosphere over Tucumán, Argentina, by continuous Doppler sounding: first results

    Get PDF
    Results of systematic analysis of propagation directions and horizontal velocities of gravity waves (GWs) and spread F structures in low-latitude ionosphere (magnetic inclination ~27°) in Tucumán region, Argentina, are presented. Measurements were carried out by multipoint continuous Doppler system during 1 year from December 2012 to November 2013. It was found that meridian propagation of GWs dominated and that southward propagation prevailed in the local summer. Oblique spread structures observed in Doppler shift spectrograms and associated with spread F propagated roughly eastward at velocities from ~70 to ~180 m/s and were observed at night from ~ September to ~ March. The velocities were computed for 182 events and the azimuths for 64 events. Continuous Doppler sounding makes it possible to analyze more events compared to optical observations often used for propagation studies since the measurements do not depend on weather.Fil: Chum, J.. Institute of Atmospheric Physics; República ChecaFil: Miranda Bonomi, Fernando Alberto. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Electricidad, Electrónica y Computación. Laboratorio de Telecomunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fišer, J.. Institute of Atmospheric Physics; República ChecaFil: Cabrera, M. A.. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Electricidad, Electrónica y Computación. Laboratorio de Telecomunicaciones; Argentina. Universidad Tecnológica Nacional. Facultad Regional Tucuman; ArgentinaFil: Ezquer, Rodolfo Gerardo. Universidad Tecnológica Nacional. Facultad Regional Tucuman; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física. Laboratorio de Ionosfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Burešová, D.. Institute of Atmospheric Physics; República ChecaFil: Laštovička, J.. Institute of Atmospheric Physics; República ChecaFil: Baše, J.. Institute of Atmospheric Physics; República ChecaFil: Hruška, F.. Institute of Atmospheric Physics; República ChecaFil: Molina, Maria Graciela. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ise, Juan Eduardo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Electricidad, Electrónica y Computación. Laboratorio de Telecomunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cangemi, José Ignacio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Electricidad, Electrónica y Computación. Laboratorio de Telecomunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Šindelářová, T.. Institute of Atmospheric Physics; República Chec

    Atmospheric and ionospheric waves induced by the Hunga eruption on 15 January 2022; Doppler sounding and infrasound

    No full text
    The massive explosive eruption of the Hunga volcano on 15 January 2022 generated atmospheric waves that were recorded around the globe and affected the ionosphere. The paper focuses on observations of atmospheric waves in the troposphere and ionosphere in Europe, however, a comparison with observations in East Asia, South Africa and South America is also provided. Unlike most recent studies of waves in the ionosphere based on the detection of changes in the total electron content, this study builds on detection of ionospheric motions at specific altitudes using continuous Doppler sounding. In addition, much attention is paid to long-period infrasound (periods longer than ca. 50s), which in Europe is observed simultaneously in the troposphere and ionosphere about an hour after the arrival of the first horizontally propagating pressure pulse (Lamb wave). It is shown that the long-period infrasound propagated approximately along the shorter great circle path, similar to the previously detected pressure pulse in the troposphere. It is suggested that the infrasound propagated in the ionosphere probably due to imperfect refraction in the lower thermosphere. The observation of infrasound in the ionosphere at such large distances from the source (over 16 000 km) is rare and differs from ionospheric infrasound detected at large distances from the epicenters of strong earthquakes, because in the latter case the infrasound is generated locally by seismic waves. An unusually large traveling ionospheric disturbance (TID) observed in Europe and associated with the pressure pulse from the Hunga eruption is also discussed. Doppler sounders in East Asia, South Africa and South America did not record such a significant TID. However, TIDs were observed in East Asia around times when Lamb waves passed the magnetically conjugate points. A probable observation of wave in the mesopause region in Europe approximately 25 min after the arrival of pressure pulse in the troposphere using a 23.4 kHz signal from a transmitter 557 km away and a coincident pulse in electric field data are also discussed

    The MeteoMet2 project:Highlights and results

    Get PDF
    Launched in 2011 within the European Metrology Research Programme (EMRP) of EURAMET, the joint research project 'MeteoMet'\u2014Metrology for Meteorology\u2014is the largest EMRP consortium; national metrology institutes, universities, meteorological and climate agencies, research institutes, collaborators and manufacturers are working together, developing new metrological techniques, as well as improving existing ones, for use in meteorological observations and climate records. The project focuses on humidity in the upper and surface atmosphere, air temperature, surface and deep-sea temperatures, soil moisture, salinity, permafrost temperature, precipitation, and the snow albedo effect on air temperature. All tasks are performed using a rigorous metrological approach and include the design and study of new sensors, new calibration facilities, the investigation of sensor characteristics, improved techniques for measurements of essential climate variables with uncertainty evaluation, traceability, laboratory proficiency and the inclusion of field influencing parameters, long-lasting measurements, and campaigns in remote and extreme areas. The vision for MeteoMet is to take a step further towards establishing full data comparability, coherency, consistency, and long-term continuity, through a comprehensive evaluation of the measurement uncertainties for the quantities involved in the global climate observing systems and the derived observations. The improvement in quality of essential climate variables records, through the inclusion of measurement uncertainty budgets, will also highlight possible strategies for the reduction of the uncertainty. This contribution presents selected highlights of the MeteoMet project and reviews the main ongoing activities, tasks and deliverables, with a view to its possible future evolution and extended impact
    corecore