12 research outputs found

    Global raptor research and conservation priorities : Tropical raptors fall prey to knowledge gaps

    Get PDF
    Abstract Aim Raptors serve critical ecological functions, are particularly extinction-prone and are often used as environmental indicators and flagship species. Yet, there is no global framework to prioritize research and conservation actions on them. We identify for the first time the factors driving extinction risk and scientific attention on raptors and develop a novel research and conservation priority index (RCPI) to identify global research and conservation priorities. Location Global. Methods We use random forest models based on ecological traits and extrinsic data to identify the drivers of risk and scientific attention in all raptors. We then map global research and conservation priorities. Lastly, we model where priorities fall relative to country-level human social indicators. Results Raptors with small geographic ranges, scavengers, forest-dependent species and those with slow life histories are particularly extinction-prone. Research is extremely biased towards a small fraction of raptor species: 10 species (1.8% of all raptors) account for one-third of all research, while one-fifth of species have no publications. Species with small geographic ranges and those inhabiting less developed countries are greatly understudied. Regions of Latin America, Africa and Southeast Asia are identified as particularly high priority for raptor research and conservation. These priorities are highly concentrated in developing countries, indicating a global mismatch between priorities and capacity for research and conservation. Main conclusions A redistribution of scientific attention and conservation efforts towards developing tropical countries and the least-studied, extinction-prone species is critical to conserve raptors and their ecological functions worldwide. We identify clear taxonomic and geographic research and conservation priorities for all raptors, and our methodology can be applied across other taxa to prioritize scientific investment.Peer reviewe

    Priority areas for vulture conservation in the Horn of Africa largely fall outside the protected area network

    Get PDF
    Vulture populations are in severe decline across Africa and prioritization of geographic areas for their conservation is urgently needed. To do so, we compiled three independent datasets on vulture occurrence from road-surveys, GPS-tracking, and citizen science (eBird), and used maximum entropy to build ensemble species distribution models (SDMs). We then identified spatial vulture conservation priorities in Ethiopia, a stronghold for vultures in Africa, while accounting for uncertainty in our predictions. We were able to build robust distribution models for five vulture species across the entirety of Ethiopia, including three Critically Endangered, one Endangered, and one Near Threatened species. We show that priorities occur in the highlands of Ethiopia, which provide particularly important habitat for Bearded Gypaetus barbatus, Hooded Necrosyrtes monachus, Ruppell's Gyps ruppelli and White-backed Gyps africanus Vultures, as well as the lowlands of north-eastern Ethiopia, which are particularly valuable for the Egyptian Vulture Neophron percnopterus. One-third of the core distribution of the Egyptian Vulture was protected, followed by the White-backed Vulture at one-sixth, and all other species at one-tenth. Overall, only about one-fifth of vulture priority areas were protected. Given that there is limited protection of priority areas and that vultures range widely, we argue that measures of broad spatial and legislative scope will be necessary to address drivers of vulture declines, including poisoning, energy infrastructure, and climate change, while considering the local social context and aiding sustainable development.Peer reviewe

    Bird and bat predation services in tropical forests and agroforestry landscapes

    Full text link
    Understanding distribution patterns and multitrophic interactions is critical for managing batâ and birdâ mediated ecosystem services such as the suppression of pest and nonâ pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We report that for birds but not bats community composition and relative importance of functional groups changes conspicuously from forests to habitats including both agricultural areas and forests, here termed â forestâ agriâ habitats, with reduced representation of insectivores in the latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those in temperate and boreal communities. The relative importance of birds versus bats in regulating pest abundances varies with season, geography and management. Birds and bats may even suppress tropical arthropod outbreaks, although positive effects on plant growth are not always reported. As both bats and birds are major agents of pest suppression, a better understanding of the local and landscape factors driving the variability of their impact is needed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134094/1/brv12211_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134094/2/brv12211.pd

    Anthropogenic food resources foster the coexistence of distinct life history strategies: year-round sedentary and migratory brown bears

    Full text link
    Plastic behavioral adaptation to human activities can result in the enhancement and establishment of distinct behavioral types within a population. Such inter-individual behavioral variations, if unaccounted for, can lead to biases in our understanding of species’ feeding habits, movement pattern, and habitat selection. We tracked the movements of 16 adult brown bears in a small and isolated population in northeast Turkey to i) identify inter-individual behavioral variations associated with the use of a garbage dump and ii) to examine how these variations influenced ranging patterns, movements behavior and habitat selection. We identified two remarkably distinct behavioral types: bears that regularly visited the dump and remained sedentary year-round, and bears that never visited the dump and migrated 165.7 ± 20.1 km (round-trip mean cumulative distance ± SE) prior to hibernation to search for food. We demonstrated that during migratory trips, bears moved more rapidly and were less selective in habitat choice than during the sedentary phase; during the migration phase forest cover was the only important environmental characteristic. Our results thus reinforce the growing evidence that animals’ use of the landscape largely changes according to movement phase. Our study shows that anthropogenic food resources can influence food habits, which can have cascading effects on movement patterns and hence habitat selection, ultimately resulting in the establishment of distinct behavioral types within a population. Identification and consideration of these behavioral types is thus fundamental for the correct implementation of evidence-based conservation strategies at the population level

    Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals

    Get PDF
    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11–15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impact

    Framework to assess the impacts of climate change on species.

    No full text
    <p>Combinations of the three dimensions of climate change vulnerability, namely sensitivity, exposure and low adaptive capacity describe four distinct classes of climate change vulnerable species, each with particular implications for conservation prioritisation and strategic planning. Species that are ‘highly climate change vulnerable’ (1), being sensitive, exposed and of low adaptive capacity, are of greatest concern. They are the first priority for monitoring responses to climate change and for assessment of the interventions needed to support them. ‘Potential adapters’ (2) are sensitive and exposed (but high adaptive capacity) species that may be able to mitigate negative climate change impacts by dispersal or microevolution, although close monitoring is needed to verify this. ‘Potential persisters’ (3) have low adaptive capacity and are exposed (but are not sensitive) so may be able to withstand climate change <i>in situ</i> by themselves, but again, monitoring is needed to ensure that the assumptions about insensitivity are realized in practice. Finally, species of ‘high latent risk’ (4) have low adaptive capacity and are sensitive (but are not exposed). Although not of immediate concern if climate change projections and emissions scenarios are accurate, they could become climate change vulnerable if exposed beyond selected time frames (e.g., 2050).</p

    Concentrations of species that are both climate change vulnerable and threatened by non-climate stressors.

    No full text
    <p>Areas with high concentrations of species that are climate change vulnerable only are in yellow, threatened species (according to the IUCN Red List) only are in blue, and areas with high concentrations of both are shown in maroon. The log of total numbers of these birds, amphibians and corals are represented by A, B and C respectively (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0065427#pone.0065427.s006" target="_blank">Figure S6</a> for maps of the proportions of these species relative to species richness). Grey areas show where species are present but concentrations of species that are either climate change vulnerable or threatened are low; colours increase in intensity as species concentrations increase. These results are based on the moderate A1B emissions scenario for 2050 and assume optimistic assumptions for missing trait information.</p

    Concentrations of climate change vulnerable species.

    No full text
    <p>Areas with greatest concentrations of species with high sensitivity and low adaptive capacity only are shown in blue, and those with high exposure to climatic change only are in yellow. Areas with high concentrations of species that have high sensitivity and low adaptive capacity species, as well as of highly exposed species, are shown in maroon; they correspond with areas of high overall climate change vulnerability. Total numbers of climate change vulnerable birds, amphibians and corals are shown in A, C and E respectively, while B, D and F show the proportions of species occurring in a region that are climate change vulnerable. Grey areas show where species are present, but concentrations of focal species groups are low; colours increase in intensity as total numbers (for A, C and E) and proportions (for B, D and F) of focal species increase. These results were based on the moderate A1B emissions scenario for 2050 and assume an optimistic scenario for missing trait information.</p

    Climate change vulnerability under different emissions scenarios.

    No full text
    <p>Red, black, and blue lines represent the percentages of highly climate change vulnerable species under high (A2), mid-range (A1B) and low (B1) emissions scenarios for birds (A), amphibians (B) and corals (C) for 1975–2050 and 1975–2090. Optimistic and pessimistic estimates for missing biological trait data are represented by solid and dashed lines respectively.</p
    corecore