147 research outputs found

    Analysis of the cytoskeleton organization and its possible functions in male earthworm germ-line cysts equipped with a cytophore

    Get PDF
    We studied the organization of F-actin and the microtubular cytoskeleton in male germ-line cysts in the seminal vesicles of the earthworm Dendrobaena veneta using light, fluorescent and electron microscopy along with both chemically fixed tissue and life cell imaging. Additionally, in order to follow the functioning of the cytoskeleton, we incubated the cysts in colchicine, nocodazole, cytochalasin D and latrunculin A. The male germ-line cells of D. veneta are interconnected via stable intercellular bridges (IB), and form syncytial cysts. Each germ cell has only one IB that connects it to the anuclear central cytoplasmic mass, the cytophore. During the studies, we analyzed the cytoskeleton in spermatogonial, spermatocytic and spermatid cysts. F-actin was detected in the cortical cytoplasm and forms distinct rings in the IBs. The arrangement of the microtubules changed dynamically during spermatogenesis. The microtubules are distributed evenly in whole spermatogonial and spermatocytic cysts; however, they primarily accumulate within the IBs in spermatogonia. In early spermatids, microtubules pass through the IBs and are present in whole cysts. During spermatid elongation, the microtubules form a manchette while they are absent in the cytophore and in the IBs. Use of cytoskeletal drugs did not alter the general morphology of the cysts. Detectable effects—the occurrence of nuclei in the late spermatids and manchette fragments in the cytophore—were observed only after incubation in nocodazole. Our results suggest that the microtubules are responsible for cytoplasmic/organelle transfer between the germ cells and the cytophore during spermatogenesis and for the positioning of the spermatid nuclei

    Microsporidia infect the Liophloeus lentus (Insecta, Colepotera) ovarioles, developing ocytes and eggs

    Get PDF
    In the ovarioles of Liophloeus lentus (Insecta, Coleoptera, Curculionidae) two types of bacteria and parasitic microorganisms belonging to Microsporidia have been found. This study shows that the different microsporidian life stages (meronts, sporonts, sporoblasts and spores) infect the outer ovariole sheath, trophic chambers, follicular cells, late previtellogenic and vitellogenic oocytes and eggs. In trophic chambers the parasites are very abundant and are distributed unevenly, i.e. their large mass occupies the syncytial cytoplasm between the nurse cell nuclei, whereas the neck region of the trophic chamber (which houses young oocytes, prefollicular cells and trophic cords) is almost free of parasites. The developing oocytes and eggs contain a lower number of parasites which are usually distributed in the cortical ooplasm. The gross morphology of the ovaries is similar in infected and non-infected specimens. Similarly, the presence of a parasite seems to not disturb the course of oogensis. The only difference was found in the ultrastructure of mitochondria in young previtellogenic oocytes. In the infected females they are unusual i.e. bigger and spherical with tubullar cristae, whereas in the non-infected insects they are elongated and have lamellar cristae. As oogenesis progresses the unusual mitochondria rapidly change their morphology and become similar to the mitochondria in non-infected females. Taking into account the distribution of parasites within the ovarioles, it is suggested that they infect growing oocytes via outer ovariole sheath and follicular epithelium rather than via trophic cords

    ADAPTATION OF ENGINEERING FEA-BASED ALGORITHMS TO LCF FAILURE AND MATERIAL DATA PREDICTION IN OFFSHORE DESIGN

    Get PDF
    There is an ever growing industrial demand for quantitative assessment of fatigue endurance of critical structural details. Although FEA-based calculations have become a standard in engineering design, problems involving the Low-To-Medium cycle range (101-104) remain challenging. This paper presents an attempt to optimally choose material data, meshing density and other algorithm settings in the context of recent design of he large offshore windfarm installation vessel, VIDAR. In this study, an attempt is made to assess default FEA-based procedures in RADIOSS software by comparing an experimental test against numerical analyses. Standard slender cylindrical ("I") samples as well as originally designed "Z"-shaped samples made of A90 (S690)-grade steel have been loaded at various nominal stress ranges with or without local yielding. A good correlation has been found between FEA results and experimental cycles-to-failure in I-shaped samples, provided the softwarematerial data generator is avoided and Smith-Watson-Topper mean stress correction is used. In the case of Z-shaped samples, the calculated cycles-to-initiation of macro-crack is significantly lower (factor of 3) from the experiment. The observed discrepancy is argued to be due to stress gradient influence

    The ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae) Is composed of one, huge germ-line cyst that is enriched with cytoskeletal components

    Get PDF
    Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal). In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using Tubulin-Tracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germline cyst of complex (germ cells - ring canals - cytophore) organization. A comparison between the cysts that are described here and other well-known female germ-line cysts is also made

    Immunocytochemical analysis of bifid trichomes in Aldrovanda vesiculosa l. traps

    Get PDF
    The two-armed bifids (bifid trichomes) occur on the external (abaxial) trap surface, petiole, and stem of the aquatic carnivorous plant Aldrovanda vesiculosa (Droseracee). These trichomes play the role of mucilage trichomes. This study aimed to fill the gap in the literature concerning the immunocytochemistry of the bifid trichomes and compare them with digestive trichomes. Light and electron microscopy was used to show the trichome structure. Fluorescence microscopy revealed the localization of carbohydrate epitopes associated with the major cell wall polysaccharides and glycoproteins. The stalk cells and the basal cells of the trichomes were differentiated as endodermal cells. Cell wall ingrowths occurred in all cell types of the bifid trichomes. Trichome cells differed in the composition of their cell walls. The cell walls of the head cells and stalk cells were enriched with arabinogalactan proteins (AGPs); however, they were generally poor in both low- and highly-esterified homogalacturonans (HGs). The cell walls in the trichome cells were rich in hemicelluloses: xyloglucan and galactoxyloglucan. The cell wall ingrowths in the basal cells were significantly enriched with hemicelluloses. The presence of endodermal cells and transfer cells supports the idea that bifid trichomes actively transport solutes, which are polysaccharide in nature. The presence of AGPs (which are considered plant signaling molecules) in the cell walls in these trichome cells indicates the active and important role of these trichomes in plant function. Future research should focus on the question of how the molecular architecture of trap cell walls changes in cells during trap development and prey capture and digestion in A. vesiculosa and other carnivorous plants

    Immunodetection of pectic epitopes, arabinogalactan proteins, and extensins in mucilage cells from the ovules of "Pilosella officinarum" Vaill. and "Taraxacum officinale" agg. (Asteraceae)

    Get PDF
    The main aim of this study was to compare the cytological difference between ovular mucilage cells in two Asteraceae species - Pilosella officinarum and Taraxacum officinale - in order to determine whether pectic epitopes, arabinogalactan proteins, or extensins are present. The immunocytochemical technique was used. Both the Taracacum and Pilosella genera have been used recently as models for understanding the mechanisms of apomixis. Knowledge of the presence of signal molecules (pectic epitopes, arabinogalactan proteins, and extensins) can help better understand the developmental processes in these plants during seed growth. The results showed that in Pilosella officinarum, there was an accumulation of pectins in the mucilage, including both weakly and highly esterified pectins, which was in contrast to the mucilage of Taraxacum officinale, which had low amounts of these pectins. However, Taraxacum protoplasts of mucilage cells were rich in weakly methyl-esterified pectins. While the mucilage contained arabinogalactan proteins in both of the studied species, the types of arabinogalactan proteins were different. In both of the studied species, extensins were recorded in the transmitting tissues. Arabinogalactan proteins as well as weakly and highly esterified pectins and extensins occurred in close proximity to calcium oxalate crystals in both Taraxacum and Pilosella cells

    Integument cell differentiation in dandelions (Taraxacum, Asteraceae, Lactuceae) with special attention paid to plasmodesmata

    Get PDF
    The aim of the paper is to determine what happens with plasmodesmata when mucilage is secreted into the periplasmic space in plant cells. Ultrastructural analysis of the periendothelial zone mucilage cells was performed on examples of the ovule tissues of several sexual and apomictic Taraxacum species. The cytoplasm of the periendothelial zone cells was dense, filled by numerous organelles and profiles of rough endoplasmic reticulum and active Golgi dictyosomes with vesicles that contained fibrillar material. At the beginning of the differentiation process of the periendothelial zone, the cells were connected by primary plasmodesmata. However, during the differentiation and the thickening of the cell walls (mucilage deposition), the plasmodesmata become elongated and associated with cytoplasmic bridges. The cytoplasmic bridges may connect the protoplast to the plasmodesmata through the mucilage layers in order to maintain cell-to-cell communication during the differentiation of the periendothelial zone cells

    The structure and occurrence of a velum in Utricularia traps (Lentibulariaceae)

    Get PDF
    PolandBladderworts (Utricularia, Lentibulariaceae, Lamiales) are carnivorous plants that form small suction traps (bladders) for catching invertebrates. The velum is a cuticle structure that is produced by specialized trichomes of the threshold pavement epithelium. It is believed that the velum together with the mucilage seals the free edge of the trap door and that it is necessary for correct functioning of the trap. However, recently, some authors have questioned the occurrence of a velum in the traps of the Utricularia from the various sections. The main aim of this study was to confirm whether velum occurs in the traps of the Utricularia species from the subgenera Polypompholyx, Bivalvaria, and Utricularia. The 15 species were examined from subg. Polypompholyx, subg. Bivalvaria, and subg. Utricularia. A velum was found in all examined Utricularia species. In the traps of the members of section Pleiochasia, there was an outer velum (forming a complete ring) and an inner velum. In the traps of Utricularia uniflora (Lasiocaules), there was only an inner velum. In these species, the formation of the velum was accompanied by intensive mucilage production, and as a result, when door was closed (set position), the mucilage and the velum touched the surface of the door. In members of both sections of Pleiochasia and Lasiocaules, the pavement epithelium had a more complicated structure (four to five zones) than in the members of the subgenera Bivalvaria and Utricularia in which three distinct zones occurred (an outer with a velum, a middle and an internal with the mucilage trichomes). Even in U. purpurea, where the threshold was a reduced pavement epithelium, it consisted of three functional zones and the presence of a velum. Two main types of velum have been proposed. A velum was present in Utricularia traps regardless of the trap type or the habitat (aquatic, epiphytic, and terrestrial species). We proposed broad definition of velum as cuticle membranes covered by mucilage; from a functional point of view, this definition is more useful and more reflects complexity of this structure
    corecore