15 research outputs found

    Differential Cross Section for Proton Induced Deuteron Breakup at 108 MeV

    Get PDF
    The differential cross sections for the proton-deuteron breakup reaction have been measured for more than 200 angular configurations of outgoing protons in the range of polar angles from 13 to 27 degrees with a proton beam at 108 MeV. The paper presents the experimental results of the selected configurations, which are compared to state-of-the-art theoretical calculations. In some regions of the phase space, a strong influence of the Coulomb interaction is observed.</p

    Simulation of Star configurations in the BINA detector

    Get PDF
    Star Anomaly is one of the most intriguing and unsolved discrepancies between theoretical calculations and experimental data observed in the domain of few-nucleon systems at low energies. Previous and upcoming measurements of the breakup reaction with the use of the BINA detector enable systematic studies of the Star configurations at intermediate energies. A dedicated simulation was developed to study feasibility of registering such events with the required accuracy and to support the future data analysis. An additional rotation angle has been introduced to parametrise the Star configurations. First results concerning the acceptance of certain segments of BINA for registering the Star configurations are presented

    Studies of Deuteron Breakup Reactions in Deuteron–Deuteron Collisions at 160 MeV with BINA

    Get PDF
    A rich set of differential cross section of the three-body 2H(d,dp)n breakup reaction at 160MeV deuteron beam energy has been measured over a large range of the available phase space. The experiment was performed at KVI in Groningen, the Netherlands, using the BINA detector. The cross-section data for the breakup reaction have been normalized to the simultaneously measured 2H(d,d)2H elastic scattering cross section. The breakup cross sections obtained for 147 kinematically complete configurations near the quasifree scattering kinematics are compared to the recent approximate calculations for the three-cluster breakup in deuteron–deuteron collisions. The cross sections for 294 kinematic configurations of the quasi-free scattering regime, for which no theoretical calculations exist, are also presented. Besides the three-body breakup, semiinclusive energy distributions for the four-body 2H(d,pp)nn breakup are reported

    Quantum Correlations in NMR systems

    Full text link
    In conventional NMR experiments, the Zeeman energy gaps of the nuclear spin ensembles are much lower than their thermal energies, and accordingly exhibit tiny polarizations. Generally such low-purity quantum states are devoid of quantum entanglement. However, there exist certain nonclassical correlations which can be observed even in such systems. In this chapter, we discuss three such quantum correlations, namely, quantum contextuality, Leggett-Garg temporal correlations, and quantum discord. In each case, we provide a brief theoretical background and then describe some results from NMR experiments.Comment: 21 pages, 7 figure

    Measurement of differential cross sections for deuteron-proton breakup reaction at 160 MeV

    Get PDF
    Differential cross sections for deuteron breakup 1H(d,pp)n^{1}H(d, pp)n reaction were measured for a large set of 243 geometrical configurations at the beam energy of 80 MeV/nucleon. The cross section data are normalized by the luminosity factor obtained on the basis of simultaneous measurement of elastic scattering channel and the existing cross section data for this process. The results are compared to the theoretical calculations modeling nuclear interaction with and without taking into account the three-nucleon force (3NF) and Coulomb interaction. In the validated region of the phase space both the Coulomb force and 3NF play an important role in a good description of the data. There are also regions, where the improvements of description due to including 3NF are not sufficient

    Experimental studies of few-nucleon systems

    Get PDF
    Special issue, XLVI Extraordinary Congress of Polish Physicists, Warsaw, Poland, October 16–18, 2020Understanding nuclear interactions is the basis for describing nuclear systems, their structure and reac-tions. Studies of reactions in the simplest systems consisting of a few nucleons provide stringent tests for nuclear interaction models. The data collected by our group over the last 30 years are crucial for un-derstanding the few-nucleon system dynamics. Measurements of observables (cross-section, vector and tensor analyzing powers) for the deuteron breakup in collision with a proton/deuteron were conducted at SIN/PSI (Switzerland), KVI (the Netherlands), FZ-Jülich (Germany) and CCB IFJ PAN Kraków (Poland), and provided data covering a wide range of the reaction phase-space. Main conclusions fol-lowing from our research and its current status are presented

    Investigation of the cross section for dd elastic scattering and ddn3Hedd \rightarrow n ^{3}He reactions at 160 MeV

    No full text
    Differential cross sections of 2^{2}H(d, d)d elastic scattering and proton transfer 2^{2}H(d, 3^{3}He)n reactions at 160 MeV beam energy have been obtained. They have been normalized relative to the existing cross-section data for the 2^{2}H(d, d)d elastic scattering at 180 and 130 MeV, benefiting from the negligible energy dependence of this observable at certain range of the four momentum transfer. The experiment was performed at KVI in Groningen, the Netherlands using the BINA detector. The elastic scattering data are compared to theoretical predictions based on the lowest-order term in the Neumann series expansion for four-nucleon transition operators. The calculations underpredict the data. The data presented in this paper can be used to validate the future theoretical findings

    Three-body breakup in deuteron-deuteron collisions at 160 MeV including quasifree scattering

    Get PDF
    A set of differential cross section of the three-body 2^{2}H(dd,dpdp)nn breakup reaction at 160 MeV deuteron beam energy are presented for 147 kinematically complete configurations near the quasi-free scattering kinematics. The experiment was performed at KVI in Groningen, the Netherlands using the BINA detector. The cross-section data have been normalized to the 2^{2}H(dd,dd)2^{2}H elastic scattering cross section. The data are compared to the recent single-scattering approximation (SSA) calculations for three-cluster breakup in deuteron-deuteron collisions. Confronting the SSA predictions with the experimental data shows that SSA provides the correct order of magnitude of the cross-section data. The studied energy is probably too low to meet the SSA assumptions which prevents better accuracy of the description

    Measurement of differential cross sections for the deuteron-proton breakup reaction at 160 MeV

    No full text
    Differential cross sections for the deuteron breakup H1(d,pp)n reaction were measured for a large set of 243 geometrical configurations at the beam energy of 80 MeV/nucleon. The cross-section data are normalized by the luminosity factor obtained on the basis of a simultaneous measurement of the elastic-scattering channel and the existing cross-section data for this process. The results are compared with the theoretical calculations modeling nuclear interactions with and without taking into account the three-nucleon force (3NF) and the Coulomb interaction. In the validated region of the phase space, both the Coulomb force and 3NF play an important role in providing a good description of the data. There are also regions in which description improvements due to the inclusion of 3NF are insufficient
    corecore