5 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    The Human Penguin Project: Climate, Social Integration, and Core Body Temperature

    Get PDF
    Social thermoregulation theory posits that modern human relationships are pleisiomorphically organized around body temperature regulation. In two studies (N = 1755) designed to test the principles from this theory, we used supervised machine learning to identify social and non-social factors that relate to core body temperature. This data-driven analysis found that complex social integration (CSI), defined as the number of high-contact roles one engages in, is a critical predictor of core body temperature. We further used a cross-validation approach to show that colder climates relate to higher levels of CSI, which in turn relates to higher CBT (when climates get colder). These results suggest that despite modern affordances for regulating body temperature, people still rely on social warmth to buffer their bodies against the cold

    Many Labs 5: Testing Pre-Data-Collection Peer Review as an Intervention to Increase Replicability

    No full text
    none172siReplication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p <.05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3–9; median total sample = 1,279.5, range = 276–3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (Δr =.002 or.014, depending on analytic approach). The median effect size for the revised protocols (r =.05) was similar to that of the RP:P protocols (r =.04) and the original RP:P replications (r =.11), and smaller than that of the original studies (r =.37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r =.07, range =.00–.15) were 78% smaller, on average, than the original effect sizes (median r =.37, range =.19–.50).mixedEbersole C.R.; Mathur M.B.; Baranski E.; Bart-Plange D.-J.; Buttrick N.R.; Chartier C.R.; Corker K.S.; Corley M.; Hartshorne J.K.; IJzerman H.; Lazarevic L.B.; Rabagliati H.; Ropovik I.; Aczel B.; Aeschbach L.F.; Andrighetto L.; Arnal J.D.; Arrow H.; Babincak P.; Bakos B.E.; Banik G.; Baskin E.; Belopavlovic R.; Bernstein M.H.; Bialek M.; Bloxsom N.G.; Bodroza B.; Bonfiglio D.B.V.; Boucher L.; Bruhlmann F.; Brumbaugh C.C.; Casini E.; Chen Y.; Chiorri C.; Chopik W.J.; Christ O.; Ciunci A.M.; Claypool H.M.; Coary S.; Colic M.V.; Collins W.M.; Curran P.G.; Day C.R.; Dering B.; Dreber A.; Edlund J.E.; Falcao F.; Fedor A.; Feinberg L.; Ferguson I.R.; Ford M.; Frank M.C.; Fryberger E.; Garinther A.; Gawryluk K.; Ashbaugh K.; Giacomantonio M.; Giessner S.R.; Grahe J.E.; Guadagno R.E.; Halasa E.; Hancock P.J.B.; Hilliard R.A.; Huffmeier J.; Hughes S.; Idzikowska K.; Inzlicht M.; Jern A.; Jimenez-Leal W.; Johannesson M.; Joy-Gaba J.A.; Kauff M.; Kellier D.J.; Kessinger G.; Kidwell M.C.; Kimbrough A.M.; King J.P.J.; Kolb V.S.; Kolodziej S.; Kovacs M.; Krasuska K.; Kraus S.; Krueger L.E.; Kuchno K.; Lage C.A.; Langford E.V.; Levitan C.A.; de Lima T.J.S.; Lin H.; Lins S.; Loy J.E.; Manfredi D.; Markiewicz L.; Menon M.; Mercier B.; Metzger M.; Meyet V.; Millen A.E.; Miller J.K.; Montealegre A.; Moore D.A.; Muda R.; Nave G.; Nichols A.L.; Novak S.A.; Nunnally C.; Orlic A.; Palinkas A.; Panno A.; Parks K.P.; Pedovic I.; Pekala E.; Penner M.R.; Pessers S.; Petrovic B.; Pfeiffer T.; Pienkosz D.; Preti E.; Puric D.; Ramos T.; Ravid J.; Razza T.S.; Rentzsch K.; Richetin J.; Rife S.C.; Rosa A.D.; Rudy K.H.; Salamon J.; Saunders B.; Sawicki P.; Schmidt K.; Schuepfer K.; Schultze T.; Schulz-Hardt S.; Schutz A.; Shabazian A.N.; Shubella R.L.; Siegel A.; Silva R.; Sioma B.; Skorb L.; de Souza L.E.C.; Steegen S.; Stein L.A.R.; Sternglanz R.W.; Stojilovic D.; Storage D.; Sullivan G.B.; Szaszi B.; Szecsi P.; Szoke O.; Szuts A.; Thomae M.; Tidwell N.D.; Tocco C.; Torka A.-K.; Tuerlinckx F.; Vanpaemel W.; Vaughn L.A.; Vianello M.; Viganola D.; Vlachou M.; Walker R.J.; Weissgerber S.C.; Wichman A.L.; Wiggins B.J.; Wolf D.; Wood M.J.; Zealley D.; Zezelj I.; Zrubka M.; Nosek B.A.Ebersole, C. R.; Mathur, M. B.; Baranski, E.; Bart-Plange, D. -J.; Buttrick, N. R.; Chartier, C. R.; Corker, K. S.; Corley, M.; Hartshorne, J. K.; Ijzerman, H.; Lazarevic, L. B.; Rabagliati, H.; Ropovik, I.; Aczel, B.; Aeschbach, L. F.; Andrighetto, L.; Arnal, J. D.; Arrow, H.; Babincak, P.; Bakos, B. E.; Banik, G.; Baskin, E.; Belopavlovic, R.; Bernstein, M. H.; Bialek, M.; Bloxsom, N. G.; Bodroza, B.; Bonfiglio, D. B. V.; Boucher, L.; Bruhlmann, F.; Brumbaugh, C. C.; Casini, E.; Chen, Y.; Chiorri, C.; Chopik, W. J.; Christ, O.; Ciunci, A. M.; Claypool, H. M.; Coary, S.; Colic, M. V.; Collins, W. M.; Curran, P. G.; Day, C. R.; Dering, B.; Dreber, A.; Edlund, J. E.; Falcao, F.; Fedor, A.; Feinberg, L.; Ferguson, I. R.; Ford, M.; Frank, M. C.; Fryberger, E.; Garinther, A.; Gawryluk, K.; Ashbaugh, K.; Giacomantonio, M.; Giessner, S. R.; Grahe, J. E.; Guadagno, R. E.; Halasa, E.; Hancock, P. J. B.; Hilliard, R. A.; Huffmeier, J.; Hughes, S.; Idzikowska, K.; Inzlicht, M.; Jern, A.; Jimenez-Leal, W.; Johannesson, M.; Joy-Gaba, J. A.; Kauff, M.; Kellier, D. J.; Kessinger, G.; Kidwell, M. C.; Kimbrough, A. M.; King, J. P. J.; Kolb, V. S.; Kolodziej, S.; Kovacs, M.; Krasuska, K.; Kraus, S.; Krueger, L. E.; Kuchno, K.; Lage, C. A.; Langford, E. V.; Levitan, C. A.; de Lima, T. J. S.; Lin, H.; Lins, S.; Loy, J. E.; Manfredi, D.; Markiewicz, L.; Menon, M.; Mercier, B.; Metzger, M.; Meyet, V.; Millen, A. E.; Miller, J. K.; Montealegre, A.; Moore, D. A.; Muda, R.; Nave, G.; Nichols, A. L.; Novak, S. A.; Nunnally, C.; Orlic, A.; Palinkas, A.; Panno, A.; Parks, K. P.; Pedovic, I.; Pekala, E.; Penner, M. R.; Pessers, S.; Petrovic, B.; Pfeiffer, T.; Pienkosz, D.; Preti, E.; Puric, D.; Ramos, T.; Ravid, J.; Razza, T. S.; Rentzsch, K.; Richetin, J.; Rife, S. C.; Rosa, A. D.; Rudy, K. H.; Salamon, J.; Saunders, B.; Sawicki, P.; Schmidt, K.; Schuepfer, K.; Schultze, T.; Schulz-Hardt, S.; Schutz, A.; Shabazian, A. N.; Shubella, R. L.; Siegel, A.; Silva, R.; Sioma, B.; Skorb, L.; de Souza, L. E. C.; Steegen, S.; Stein, L. A. R.; Sternglanz, R. W.; Stojilovic, D.; Storage, D.; Sullivan, G. B.; Szaszi, B.; Szecsi, P.; Szoke, O.; Szuts, A.; Thomae, M.; Tidwell, N. D.; Tocco, C.; Torka, A. -K.; Tuerlinckx, F.; Vanpaemel, W.; Vaughn, L. A.; Vianello, M.; Viganola, D.; Vlachou, M.; Walker, R. J.; Weissgerber, S. C.; Wichman, A. L.; Wiggins, B. J.; Wolf, D.; Wood, M. J.; Zealley, D.; Zezelj, I.; Zrubka, M.; Nosek, B. A

    Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles

    No full text
    corecore