511 research outputs found
Thermal Conductivity of High Performance Concrete in Wide Temperature and Moisture Ranges
The thermal conductivity of two types of high performance concrete was measured in the temperature range from 100 °C to 800 °C and in the moisture range from dry material to saturation water content. A transient measuring method based on analysis of the measured temperature fields was chosen for the high temperature measurements, and a commercial hot wire device was employed in room temperature measurements of the effect of moisture on thermal conductivity. The measured results reveal that both temperature and moisture exhibit significant effects on the values of thermal conductivity, and these effects are quite comparable from the point of view of the magnitude of the observed variations
Temperature and Moisture Dependence of the Specific Heat of High Performance Concrete
The specific heat of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C and in the moisture range from dry material to saturation water content. A nonadiabatic method was chosen instead of classical adiabatic treatments in order to meet the requirements following from the large representative elementary volume of the materials. The measured results reveal a significant temperature effect on the specific heat value. The influence of moisture is less important than the influence of temperature, but is also not negligible
Thermal and Hygric Expansion of High Performance Concrete
The linear thermal expansion coefficient of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C, and the linear hygric expansion coefficient was determined in the moisture range from dry material to saturation water content. Comparative methods were applied for measurements of both coefficients. The experimental results show that both the effect of temperature on the values of linear thermal expansion coefficients and the effect of moisture on the values of linear hygric expansion coefficients are very significant and cannot be neglected in practical applications
Finitely generated ideal languages and synchronizing automata
We study representations of ideal languages by means of strongly connected
synchronizing automata. For every finitely generated ideal language L we
construct such an automaton with at most 2^n states, where n is the maximal
length of words in L. Our constructions are based on the De Bruijn graph.Comment: Submitted to WORDS 201
Effect of pressure cycling on Iron: Signatures of an electronic instability and unconventional superconductivity
High pressure electrical resistivity and x-ray diffraction experiments have
been performed on Fe single crystals. The crystallographic investigation
provides direct evidence that in the martensitic
transition at 14 GPa the become the directions. During a pressure cycle, resistivity shows a
broad hysteresis of 6.5 GPa, whereas superconductivity, observed between 13 and
31 GPa, remains unaffected. Upon increasing pressure an electronic instability,
probably a quantum critical point, is observed at around 19 GPa and, close to
this pressure, the superconducting and the isothermal resistivity
(K) attain maximum values. In the superconducting pressure domain,
the exponent of the temperature power law of resistivity and its
prefactor, which mimics , indicate that ferromagnetic fluctuations may
provide the glue for the Cooper pairs, yielding unconventional
superconductivity
Rietveld refinement for indium nitride in the 105-295 K range
Results of Rietveld refinement for indium nitride data collected in the temperature range 105-295 K are presented. Acicular microcrystals of indium nitride prepared by reaction of liquid indium with nitrogen plasma were studied by X-ray diffraction. The diffraction measurements were carried out at the Swiss-Norwegian Beamline SNBL (ESRF) using a MAR345 image-plate detector. Excellent counting statistics allowed for refinement of the lattice parameters of InN as well as those of the metallic indium secondary phase. In the studied temperature range, the InN lattice parameters show a smooth increase that can be approximated by a linear function. Lattice-parameter dependencies confirm the trends indicated earlier by data measured using a conventional equipment. The relative change of both the a and c lattice parameters with increasing the temperature in the studied range is about 0.05%. The axial ratio slightly decreases with rising temperature. The experimental value of the free structural parameter, u=0.3769(14), is reported for InN for the first time. Its temperature variation is found to be considerably smaller than the experimental error. The thermal-expansion coefficients (TECs), derived from the linearly approximated lattice-parameter dependencies, are αa=3.09(14)×10−6 K−1 and αc=2.79(16)×10−6 K−1. The evaluated TECs are generally consistent with the earlier data. For the present dataset, the accuracy is apparently higher for both, the lattice parameters and thermal-expansion coefficients, than for the earlier results. The refined lattice parameter cIn of the indium secondary phase exhibits the known strongly nonlinear behavior; a shift (ΔT equal about −50 K) of the maximum in cIn(T) dependence is observed with respect to the literature dat
Comparison of the Capacitance Method and the Microwave Impulse Method for Determination of Moisture Profiles in Building Materials
A comparison of the capacitance method and the microwave impulse method for the determination of moisture profiles in three typical porous building materials is presented in this paper. The basic principles of the measuring methods are given. The calibration process is described in detail. On the basis of the measured results, it can be concluded that the capacitance method provides better accuracy in the range of lower moisture content than to the microwave impulse method, which is more accurate for the highest values of moisture content.
Measurement of Moisture Storage Parameters of Building Materials
The moisture storage parameters of three different building materials: calcium silicate, ceramic brick and autoclaved aerated concrete, are determined in the hygroscopic range and overhygroscopic range. Measured sorption isotherms and moisture retention curves are then combined into moisture storage functions using the Kelvin equation. A comparison of measured results with global characteristics of the pore space obtained by mercury intrusion porosimetry shows a reasonable agreement; the median pore radii by volume are well within the interval given by the beginning and the end of the characteristic steep parts of the moisture retention curves
Evaluation of Water Resistance and Diffusion Properties of Paint Materials
A simple method is presented for evaluating the water-proofness quality of paints on lining materials. The method is based on measuring the integral capillarity in dependence on time, and then comparing this value to the value determined for the basic lining material. Measurements of the effective water vapor permeability then provide information on the risk of condensation which may increase after applying the paint. A practical application of the method is performed with four Karlocolor paints on glass concrete substrates. All the Karlocolor paints are found to be very effective materials for driven rain protection. The diffusion properties of all the paints are found to be excellent
Rietveld refinement of the crystal structures of hexagonal Y6Cr4+xAl43−x (x=2.57) and tetragonal YCr4−xAl8+x (x=1.22)
Y6Cr4+xAl43−x (x = 2.57); space group P63/mcm, a = 10.8601(1) Å, c = 17.6783(3) Å, V= 1805.7(1) Å3, Z=2; isostructural to Yb6Cr4+xAl43−x, (x=1.76) with two aluminium sites partially occupied by chromium (44% and 27% Cr). YCr4−xAl8+x (x=1.22); space group I4/mmm, a = 9.0299(2) Å, c = 5.1208(2) Å, V=417.55(3) Å3, Z=2, disordered variant of CeMn4Al8 with one chromium site (8f) partially occupied by aluminium (33% Al); X-ray powder diffraction data were collected on a well-crystallized multiphase sample containing 43 wt.% of Y6Cr4+xAl43−x, 27 wt.% of Y2Cr8−xAl16+x, 16 wt.% of Al, 13 wt.% of YAl3, and traces of Y2O3. Structure refinement converged at Rwp = 2.0% and RB = 3.5, 3.6% resp. for a total of 78 parameters and 1190 reflection
- …