7 research outputs found

    Molecular identification of Entamoeba species in savanna woodland chimpanzees (Pan troglodytes schweinfurthii).

    Get PDF
    To address the molecular diversity and occurrence of pathogenic species of the genus Entamoeba spp. in wild non-human primates (NHP) we conducted molecular-phylogenetic analyses on Entamoeba from wild chimpanzees living in the Issa Valley, Tanzania. We compared the sensitivity of molecular [using a genus-specific polymerase chain reaction (PCR)] and coproscopic detection (merthiolate-iodine-formaldehyde concentration) of Entamoeba spp. We identified Entamoeba spp. in 72 chimpanzee fecal samples (79%) subjected to species-specific PCRs for six Entamoeba species/groups (Entamoeba histolytica, Entamoeba nuttalli, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba coli and Entamoeba polecki ST2). We recorded three Entamoeba species: E. coli (47%), E. dispar (16%), Entamoeba hartmanni (51%). Coproscopically, we could only distinguish the cysts of complex E. histolytica/dispar/moshkovskii/nuttalli and E. coli. Molecular prevalence of entamoebas was higher than the prevalence based on the coproscopic examination. Our molecular phylogenies showed that sequences of E. dispar and E. coli from Issa chimpanzees are closely related to sequences from humans and other NHP from GenBank. The results showed that wild chimpanzees harbour Entamoeba species similar to those occurring in humans; however, no pathogenic species were detected. Molecular-phylogenetic methods are critical to improve diagnostics of entamoebas in wild NHP and for determining an accurate prevalence of Entamoeba species

    Superorganisms of the protist kingdom : a new level of biological organization

    Get PDF
    The concept of superorganism has a mixed reputation in biology-for some it is a convenient way of discussing supra-organismal levels of organization, and for others, little more than a poetic metaphor. Here, I show that a considerable step forward in the understanding of superorganisms results from a thorough review of the supra-organismal levels of organization now known to exist among the “unicellular” protists. Limiting the discussion to protists has enormous advantages: their bodies are very well studied and relatively simple (as compared to humans or termites, two standard examples in most discussions about superorganisms), and they exhibit an enormous diversity of anatomies and lifestyles. This allows for unprecedented resolution in describing forms of supra-organismal organization. Here, four criteria are used to differentiate loose, incidental associations of hosts with their microbiota from “actual” superorganisms: (1) obligatory character, (2) specific spatial localization of microbiota, (3) presence of attachment structures and (4) signs of co-evolution in phylogenetic analyses. Three groups-that have never before been described in the philosophical literature-merit special attention: Symbiontida (also called Postgaardea), Oxymonadida and Parabasalia. Specifically, it is argued that in certain cases-for Bihospites bacati and Calkinsia aureus (symbiontids), Streblomastix strix (an oxymonad), Joenia annectens and Mixotricha paradoxa (parabasalids) and Kentrophoros (a ciliate)-it is fully appropriate to describe the whole protist-microbiota assocation as a single organism (“superorganism”) and its elements as “tissues” or, arguably, even “organs”. To account for this level of biological complexity, I propose the term “structured superorganism”

    Pseudotrichonympha leei, Pseudotrichonympha lifesoni, and Pseudotrichonympha pearti, new species of parabasalian flagellates and the description of a rotating subcellular structure

    Get PDF
    Abstract Pseudotrichonympha is a large and structurally complex genus of parabasalian protists that play a key role in the digestion of lignocellulose in the termite hindgut. Like many termite symbionts, it has a conspicuous body plan that makes genus-level identification relatively easy, but species-level diversity of Pseudotrichonympha is understudied. Molecular surveys have suggested the diversity is much greater than the current number of described species, and that many “species” described in multiple hosts are in fact different, but gene sequences from formally described species remain a rarity. Here we describe three new species from Coptotermes and Prorhinotermes hosts, including small subunit ribosomal RNA (SSU rRNA) sequences from single cells. Based on host identification by morphology and DNA barcoding, as well as the morphology and phylogenetic position of each symbiont, all three represent new Pseudotrichonympha species: P. leei, P. lifesoni, and P. pearti. Pseudotrichonympha leei and P. lifesoni, both from Coptotermes, are closely related to other Coptotermes symbionts including the type species, P. hertwigi. Pseudotrichonympha pearti is the outlier of the trio, more distantly related to P. leei and P. lifesoni than they are to one another, and contains unique features, including an unusual rotating intracellular structure of unknown function
    corecore