46 research outputs found

    Radio Labelings of Distance Graphs

    Full text link
    A radio kk-labeling of a connected graph GG is an assignment cc of non negative integers to the vertices of GG such that c(x)c(y)k+1d(x,y),|c(x) - c(y)| \geq k+1 - d(x,y), for any two vertices xx and yy, xyx\ne y, where d(x,y)d(x,y) is the distance between xx and yy in GG. In this paper, we study radio labelings of distance graphs, i.e., graphs with the set Z\Z of integers as vertex set and in which two distinct vertices i,jZi, j \in \Z are adjacent if and only if ijD|i - j| \in D.Comment: 14 page

    Computational prediction of pressure change in the vicinity of tidal stream turbines and the consequences for fish survival rate

    Get PDF
    The presence of Tidal Stream Turbines (TST) for tidal power production, leads to changes in the local physical environment that could affect fish. While other work has considered the implications with respect to conventional hydroelectric devices (i.e. hydroelectric dams), including studies such as physical impact with the rotors and pressure variation effects, this research considers the effects of sudden changes in pressure and turbulence on the hypothetical fish with respect to TSTs. Computational fluid dynamics (CFD) is used to investigate changes to the environment, and thus study the implications for fish. Two CFD methods are employed, an embedded Blade Element representation of the rotor in a RANS CFD model, and a blade resolved geometry using a moving reference frame. A new data interpretation approach is proposed as the primary source of environmental impact data; ‘rate of change of pressure’ with time along a streamtrace. This work also presents results for pressure, pressure gradients, shear rates and turbulence to draw conclusions about changes to the local physical environment. The assessment of the local impact is discussed in terms of the implications to individual fish passing a single or array of TST devices

    Legacy of pre-disturbance spatial pattern determines early structural diversity following severe disturbance in mountain spruce forests in Czech Republic

    Get PDF
    Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how predisturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, predisturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights

    The black hole accretion code

    Get PDF

    Time-resolved tuned diode laser absorption spectroscopy of pulsed plasma

    No full text
    A novel method for time-resolved tuned diode laser absorption spectroscopy has been developed. In this paper, we describe in detail developed electronic module that controls time-resolution of laser absorption spectroscopy system. The TTL signal triggering plasma pulse is used for generation of two signals: the first one triggers the fine tuning of laser wavelength and second one controls time-defined signal sampling from absorption detector. The described method and electronic system enable us to investigate temporal evolution of sputtered particles in technological low-temperature plasma systems. The pulsed DC planar magnetron sputtering system has been used to verify this method. The 2" in diameter titanium target was sputtered in pure argon atmosphere. The working pressure was held at 2 Pa. All the experiments were carried out for pulse ON time fixed at 100 (is. When changing OFF time the discharge has operated between High Power Impulse Magnetron Sputtering regime and pulsed DC magnetron regime. The effect of duty cycle variation results in decrease of titanium atom density during ON time while length of OFF time elongates. We believe that observed effect is connected with higher degree of ionization of sputtered particles. As previously reported by Bohlmark et al., the measured optical emission spectra in HiPIMS systems were dominated by emission from titanium ions [1]
    corecore