5 research outputs found

    Joint analysis of histopathology image features and gene expression in breast cancer

    Get PDF
    BACKGROUND Genomics and proteomics are nowadays the dominant techniques for novel biomarker discovery. However, histopathology images contain a wealth of information related to the tumor histology, morphology and tumor-host interactions that is not accessible through these techniques. Thus, integrating the histopathology images in the biomarker discovery workflow could potentially lead to the identification of new image-based biomarkers and the refinement or even replacement of the existing genomic and proteomic signatures. However, extracting meaningful and robust image features to be mined jointly with genomic (and clinical, etc.) data represents a real challenge due to the complexity of the images. RESULTS We developed a framework for integrating the histopathology images in the biomarker discovery workflow based on the bag-of-features approach - a method that has the advantage of being assumption-free and data-driven. The images were reduced to a set of salient patterns and additional measurements of their spatial distribution, with the resulting features being directly used in a standard biomarker discovery application. We demonstrated this framework in a search for prognostic biomarkers in breast cancer which resulted in the identification of several prognostic image features and a promising multimodal (imaging and genomic) prognostic signature. The source code for the image analysis procedures is freely available. CONCLUSIONS The framework proposed allows for a joint analysis of images and gene expression data. Its application to a set of breast cancer cases resulted in image-based and combined (image and genomic) prognostic scores for relapse-free survival

    Ixazomib-lenalidomide-dexamethasone in routine clinical practice: Effectiveness in relapsed/refractory multiple myeloma

    Get PDF
    [Aim]: To evaluate the effectiveness and safety of ixazomib-lenalidomide-dexamethasone (IRd) in relapsed/refractory multiple myeloma in routine clinical practice. Patients & methods: Patient-level data from the global, observational INSIGHT MM and the Czech Registry of Monoclonal Gammopathies were integrated and analyzed.[Results]: At data cut-off, 263 patients from 13 countries were included. Median time from diagnosis to start of IRd was 35.8 months; median duration of follow-up was 14.8 months. Overall response rate was 73%, median progression-free survival, 21.2 months and time-to-next therapy, 33.0 months. Ixazomib/lenalidomide dose reductions were required in 17%/36% of patients; 32%/30% of patients discontinued ixazomib/lenalidomide due to adverse events.[Conclusion]: The effectiveness and safety of IRd in routine clinical practice are comparable to those reported in TOURMALINE-MM1.This work was supported by Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited

    Ixazomib-lenalidomide-dexamethasone in routine clinical practice: effectiveness in relapsed/refractory multiple myeloma

    Get PDF
    Aim: To evaluate the effectiveness and safety of ixazomib-lenalidomide-dexamethasone (IRd) in relapsed/refractory multiple myeloma in routine clinical practice. Patients & methods: Patient-level data from the global, observational INSIGHT MM and the Czech Registry of Monoclonal Gammopathies were integrated and analyzed. Results: At data cut-off, 263 patients from 13 countries were included. Median time from diagnosis to start of IRd was 35.8 months; median duration of follow-up was 14.8 months. Overall response rate was 73%, median progression-free survival, 21.2 months and time-to-next therapy, 33.0 months. Ixazomib/lenalidomide dose reductions were required in 17%/36% of patients; 32%/30% of patients discontinued ixazomib/lenalidomide due to adverse events. Conclusion: The effectiveness and safety of IRd in routine clinical practice are comparable to those reported in TOURMALINE-MM1. Clinical trial registration: NCT02761187 (ClinicalTrials.gov)
    corecore