34 research outputs found

    Rettigheter og tvang i kommunale hjelpetilbud til personer med alvorlige samtidige rus- og psykiske lidelser: erfaringer med regelverket, i lys av menneskerettigheter

    Get PDF
    Rights and coercion in municipal services for persons with co-occurring severe mental illness and substance use disorders – experiences with legal framework, in light of human rights. Aims: Persons with co-occurring severe mental illness and substance use disorders can have a considerable need for municipal health and care services but can be difficult to reach with such services. In Norway, there are known perceived ambiguities and obscurities in the legal framework for such services. This study aims to further examine these legal issues in a Norwegian context, by examining what challenges service providers experience in the practice of the current legal framework in this field. Design: The data consists of 13 qualitative interviews with strategically selected service providers from Norwegian municipalities and county governors’ offices. The interviews were analyzed through systematic text condensation. Results: The participants reflections resulted in three especially salient perceived challenges in the practice of the current legal framework in this field: ‘being dependent upon extra efforts that exceed the legal minimum requirements’, ‘lacking a legal basis and tools’ and ‘a complex and composite legal framework’. Conclusions: When seen in light of human rights, the three identified challenges in legal framework should be considered more closely both from a research perspective and from a policy making perspective. It should be investigated further whether human rights oblige the state beyond setting forth minimum requirements, how different human rights impact one another, especially with a view to service providers’ rights v. service recipients’ rights, and lastly if it is feasible to simplify or clarify the current legal framework to ensure adherence to the law and to promote equal practice among service providers.publishedVersio

    Predictive and Prognostic Impact of TP53 Mutations and MDM2 Promoter Genotype in Primary Breast Cancer Patients Treated with Epirubicin or Paclitaxel

    Get PDF
    Background: TP53 mutations have been associated with resistance to anthracyclines but not to taxanes in breast cancer patients. The MDM2 promoter single nucleotide polymorphism (SNP) T309G increases MDM2 activity and may reduce wildtype p53 protein activity. Here, we explored the predictive and prognostic value of TP53 and CHEK2 mutation status together with MDM2 SNP309 genotype in stage III breast cancer patients receiving paclitaxel or epirubicin monotherapy. Experimental Design: Each patient was randomly assigned to treatment with epirubicin 90 mg/m2 (n= 109) or paclitaxel 200 mg/m2 (n = 114) every 3rd week as monotherapy for 4–6 cycles. Patients obtaining a suboptimal response on first-line treatment requiring further chemotherapy received the opposite regimen. Time from last patient inclusion to follow-up censoring was 69 months. Each patient had snap-frozen tumor tissue specimens collected prior to commencing chemotherapy. Principal Findings: While TP53 and CHEK2 mutations predicted resistance to epirubicin, MDM2 status did not. Neither TP53/ CHEK2 mutations nor MDM2 status was associated with paclitaxel response. Remarkably, TP53 mutations (p = 0.007) but also MDM2 309TG/GG genotype status (p = 0.012) were associated with a poor disease-specific survival among patients having paclitaxel but not patients having epirubicin first-line. The effect of MDM2 status was observed among individuals harbouring wild-type TP53 (p = 0.039) but not among individuals with TP53 mutated tumors (p.0.5). Conclusion: TP53 and CHEK2 mutations were associated with lack of response to epirubicin monotherapy. In contrast, TP53 mutations and MDM2 309G allele status conferred poor disease-specific survival among patients treated with primary paclitaxel but not epirubicin monotherapy

    Persistence of disseminated tumor cells after neoadjuvant treatment for locally advanced breast cancer predicts poor survival

    Get PDF
    Introduction: Presence of disseminated tumor cells (DTCs) in bone marrow (BM) and circulating tumor cells (CTC) in peripheral blood (PB) predicts reduced survival in early breast cancer. The aim of this study was to determine the presence of and alterations in DTC- and CTC-status in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy (NACT) and to evaluate their prognostic impact. Methods: Bone marrow and peripheral blood were collected before NACT (BM1: n = 231/PB1: n = 219), at surgery (BM2: n = 69/PB2: n = 71), and after 12 months from start of NACT (BM3: n = 162/PB3: n = 141). Patients were included from 1997 to 2003 and followed until 2009 (or ten years follow-up). DTC- and CTC-status were determined by morphological evaluation of immunocytochemically detected cytokeratin-positive cells. The prognostic significance of DTCs/CTCs was assessed by univariate and multivariate Cox-regression analyses. Results: Before NACT, DTCs and CTCs were detected in 21.2% and 4.9% of the patients, respectively. At surgery, 15.9% and 1.4% had DTC- and CTC-presence, compared to 26.5% and 4.3% at 12 months from start of NACT. Of patients for whom DTC results both before NACT and at 12 months were available, concordant results were observed in 68%, and 14 out of 65 had positive DTC-status at both time points. Presence of ≥ 1 DTC 12 months from start of NACT, but not at other time points, predicted reduced disease-free survival (DFS; HR 2.3, p = 0.003), breast cancer-specific survival (BCSS; HR 3.0, p < 0.001) and overall survival (OS; HR 2.8, p < 0.001). Before NACT, presence of ≥ 3 DTCs was also associated with unfavorable outcome, and reduced BCSS was observed for CTCpositive patients (HR 2.2, p = 0.046). In multivariate analysis, DTC status (</≥ 1 DTC) at 12 months after start of NACT remained as a prognostic factor for both DFS (HR 2.2, p = 0.005), BCSS (HR 2.6, p = 0.002) and OS (HR 2.6,p = 0.002). The survival for patients with change in DTC-status was determined by the DTC-status at 12 months. Conclusion: Presence of DTCs after NACT indicated high risk for relapse and death, irrespective of the DTC-status before treatment. The results supports the potential use of DTC analysis as a monitoring tool during follow up, for selection of patients to secondary treatment intervention within clinical trials

    Low expression levels of ATM may substitute for CHEK2 / TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer

    Get PDF
    Introduction: Mutations affecting p53 or its upstream activator Chk2 are associated with resistance to DNAdamaging chemotherapy in breast cancer. ATM (Ataxia Telangiectasia Mutated protein) is the key activator of p53 and Chk2 in response to genotoxic stress. Here, we sought to evaluate ATM’s potential role in resistance to chemotherapy. Methods: We sequenced ATM and assessed gene expression levels in pre-treatment biopsies from 71 locally advanced breast cancers treated in the neoadjuvant setting with doxorubicin monotherapy or mitomycin combined with 5-fluorouracil. Findings were confirmed in a separate patient cohort treated with epirubicin monotherapy. Each tumor was previously analyzed for CHEK2 and TP53 mutation status. Results: While ATM mutations were not associated with chemo-resistance, low ATM expression levels predicted chemo-resistance among patients with tumors wild-type for TP53 and CHEK2 (P = 0.028). Analyzing the ATM-chk2- p53 cascade, low ATM levels (defined as the lower 5 to 50% percentiles) or mutations inactivating TP53 or CHEK2 robustly predicted anthracycline resistance (P-values varying between 0.001 and 0.027 depending on the percentile used to define “low” ATM levels). These results were confirmed in an independent cohort of 109 patients treated with epirubicin monotherapy. In contrast, ATM-levels were not suppressed in resistant tumors harboring TP53 or CHEK2 mutations (P > 0.5). Conclusions: Our data indicate loss of function of the ATM-Chk2-p53 cascade to be strongly associated with resistance to anthracycline/mitomycin-containing chemotherapy in breast cancer

    CHEK2 Mutations Affecting Kinase Activity Together With Mutations in TP53 Indicate a Functional Pathway Associated with Resistance to Epirubicin in Primary Breast Cancer

    Get PDF
    Background: Chemoresistance is the main obstacle to cure in most malignant diseases. Anthracyclines are among the main drugs used for breast cancer therapy and in many other malignant conditions. Single parameter analysis or global gene expression profiles have failed to identify mechanisms causing in vivo resistance to anthracyclines. While we previously found TP53 mutations in the L2/L3 domains to be associated with drug resistance, some tumors harboring wild-type TP53 were also therapy resistant. The aim of this study was; 1) To explore alterations in the TP53 gene with respect to resistance to a regular dose epirubicin regimen (90 mg/m2 every 3 week) in patients with primary, locally advanced breast cancer; 2) Identify critical mechanisms activating p53 in response to DNA damage in breast cancer; 3) Evaluate in vitro function of Chk2 and p14 proteins corresponding to identified mutations in the CHEK2 and p14(ARF) genes; and 4) Explore potential CHEK2 or p14(ARF) germline mutations with respect to family cancer incidence. Methods and Findings: Snap-frozen biopsies from 109 patients collected prior to epirubicin (as preoperative therapy were investigated for TP53, CHEK2 and p14(ARF) mutations by sequencing the coding region and p14(ARF) promoter methylations. TP53 mutastions were associated with chemoresistance, defined as progressive disease on therapy (p = 0.0358; p = 0.0136 for mutations affecting p53 loop domains L2/L3). Germline CHEK2 mutations (n = 3) were associated with therapy resistance (p = 0.0226). Combined, mutations affecting either CHEK2 or TP53 strongly predicted therapy resistance (p = 0.0101; TP53 mutations restricted to the L2/L3 domains: p = 0.0032). Two patients progressing on therapy harbored the CHEK2 mutation, Arg95Ter, completely abrogating Chk2 protein dimerization and kinase activity. One patient (Epi132) revealed family cancer occurrence resembling families harboring CHEK2 mutations in general, the other patient (epi203) was non-conclusive. No mutation or promoter hypermethylation in p14(ARF) were detected. Conclusion: This study is the first reporting an association between CHEK2 mutations and therapy resistance in human cancers and to document mutations in two genes acting direct up/down-stream to each other to cause therapy failure, emphasizing the need to investigate functional cascades in future studies
    corecore