95 research outputs found

    Functional analysis of the mismatch repair system in bladder cancer

    Get PDF
    In bladder cancer the observed microsatellite instability indicates that mismatch repair deficiency could be a frequently involved factor in bladder cancer progression. To investigate this hypothesis we analysed extracts of seven bladder cancer cell lines and, as a novel approach, five clinical cancer samples for mismatch repair activity. We found that one cell line (T24) and three of the clinical samples had a reduced repair capacity, measured to ~20% or less. The T24 cell extract was unable to repair a G-G mismatch and showed reduced repair of a 2-base loop, consistent with diminished function of the MSH2-MSH6 heterodimer. The functional assay was combined with measurement for mutation frequency, microsatellite analysis, sequencing, MTT assay, immunohistochemical analysis and RT-PCR analysis of the mismatch repair genes MSH2, MSH3, MSH6, PMS1, PMS2 and MLH1. A >7-fold relative increase in mutation frequency was observed for T24 compared to a bladder cancer cell line with a fully functional mismatch repair system. Neither microsatellite instability, loss of repair nor mismatch repair gene mutations were detected. However, RT-PCR analysis of mRNA levels did detect changes in the ratio of expression of the Mut S and Mut L homologues. The T24 cell line had the lowest MSH6 expression level of the cell lines tested. Identical RT-PCR analysis of seventeen clinical samples (normal urothelium, 7; pTa low stage, 5; and pT1-4 high stage, 5) indicated a significant change in the expression ratio between MSH3/MSH6 (P< 0.004), MSH2/MSH3 (P< 0.012) and PMS2/MLH1 P< 0.005, in high stage bladder tumours compared to normal urothelium and low stage tumours. Collectively, the data suggest that imbalanced expression of mismatch repair genes could lead to partial loss of mismatch repair activity that is associated with invasive bladder cancer. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Comparative analysis of discrete exosome fractions obtained by differential centrifugation

    Get PDF
    Background: Cells release a mixture of extracellular vesicles, amongst these exosomes, that differ in size, density and composition. The standard isolation method for exosomes is centrifugation of fluid samples, typically at 100,000×g or above. Knowledge of the effect of discrete ultracentrifugation speeds on the purification from different cell types, however, is limited. Methods: We examined the effect of applying differential centrifugation g-forces ranging from 33,000×g to 200,000×g on exosome yield and purity, using 2 unrelated human cell lines, embryonic kidney HEK293 cells and bladder carcinoma FL3 cells. The fractions were evaluated by nanoparticle tracking analysis (NTA), total protein quantification and immunoblotting for CD81, TSG101, syntenin, VDAC1 and calreticulin. Results: NTA revealed the lowest background particle count in Dulbecco's Modified Eagle's Medium media devoid of phenol red and cleared by 200,000×g overnight centrifugation. The centrifugation tube fill level impacted the sedimentation efficacy. Comparative analysis by NTA, protein quantification, and detection of exosomal and contamination markers identified differences in vesicle size, concentration and composition of the obtained fractions. In addition, HEK293 and FL3 vesicles displayed marked differences in sedimentation characteristics. Exosomes were pelleted already at 33,000×g, a g-force which also removed most contaminating microsomes. Optimal vesicle-to-protein yield was obtained at 67,000×g for HEK293 cells but 100,000×g for FL3 cells. Relative expression of exosomal markers (TSG101, CD81, syntenin) suggested presence of exosome subpopulations with variable sedimentation characteristics. Conclusions: Specific g-force/k factor usage during differential centrifugation greatly influences the purity and yield of exosomes. The vesicle sedimentation profile differed between the 2 cell lines

    Development of a procedure-specific tool for skill assessment in left- and right-sided laparoscopic complete mesocolic excision

    Get PDF
    Aim: To (1) develop an assessment tool for laparoscopic complete mesocolic excision (LCME) and (2) report evidence of its content validity. Method: Assessment statements were revealed through (1) semi-structured expert interviews and (2) consensus by the Delphi method, both involving an expert panel of five LCME surgeons. All experts were interviewed and then asked to rate LCME describing statements from 1 (strongly disagree) to 5 (strongly agree). Responses were returned anonymously to the panel until consensus was reached. Statements were directly included as content in the assessment tool if ?60% of the experts responded "agree" or "strongly agree" (ratings 4 and 5), with the remaining responses being "neither agree nor disagree" (rating 3). Interclass correlation coefficient (ICC) was calculated for expert agreement evaluation. All included statements were subsequently reformulated as tool items and approved by the experts. Results: Four Delphi rounds were performed to reach consensus. Disagreement was reported for statements describing instrument handling around pancreas; visualisation of landmarks before inferior mesenteric artery ligation; lymphadenectomy around the inferior mesenteric artery, and division of the terminal ileum and transverse colon. ICC in the last Delphi-round was 0.84. The final tool content included 73 statements, converted to 48 right- and 40 left-sided items for LCME assessment. Conclusion: A procedure-specific, video-based tool, named complete mesocolic excision competency assessment tool (CMECAT), has been developed for LCME skill assessment. In the future, we hope it can facilitate assessment of LCME surgeons, resulting in improved patient outcome after colon cancer surgery

    Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The search to identify disease-susceptible genes requires access to biological material from numerous well-characterized subjects. Archived residual dried blood spot (DBS) samples, also known as Guthrie cards, from national newborn screening programs may provide a DNA source for entire populations. Combined with clinical information from medical registries, DBS samples could provide a rich source for productive research. However, the amounts of DNA which can be extracted from these precious samples are minute and may be prohibitive for numerous genotypings. Previously, we demonstrated that DBS DNA can be whole-genome amplified and used for reliable genetic analysis on different platforms, including genome-wide scanning arrays. However, it remains unclear whether this approach is workable on a large sample scale. We examined the robustness of using DBS samples for whole-genome amplification following genome-wide scanning, using arrays from Illumina and Affymetrix.</p> <p>Results</p> <p>This study is based on 4,641 DBS samples from the Danish Newborn Screening Biobank, extracted for three separate genome-wide association studies. The amount of amplified DNA was significantly (P < 0.05) affected by the year of storage and storage conditions. Nine (0.2%) DBS samples failed whole-genome amplification. A total of 4,586 (98.8%) samples met our criterion of success of a genetic call-rate above 97%. The three studies used different arrays, with mean genotyping call-rates of 99.385% (Illumina Infinium Human610-Quad), 99.722% (Illumina Infinium HD HumanOmni1-Quad), and 99.206% (Affymetrix Axiom Genome-Wide CEU). We observed a concordance rate of 99.997% in the 38 methodological replications, and 99.999% in the 27 technical replications. Handling variables such as time of storage, storage conditions and type of filter paper were shown too significantly (P < 0.05) affect the genotype call-rates in some of the arrays, although the effect was minimal.</p> <p>Conclusion</p> <p>Our study indicates that archived DBS samples from the Danish Newborn Screening Biobank represent a reliable resource of DNA for whole-genome amplification and subsequent genome-wide association studies. With call-rates equivalent to high quality DNA samples, our results point to new opportunities for using the neonatal biobanks available worldwide in the hunt for genetic components of disease.</p

    Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci.

    Get PDF
    Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies

    High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Egr-1 (early growth response-1 transcription factor) has been proposed to be involved in invasion and metastasis processes of human bladder cancer, but Egr-1 protein expression levels in human bladder cancer have not been investigated. In the present study we investigated the expression levels of Egr-1 protein in early stages of human bladder cancer and correlated it to later progression.</p> <p>Methods</p> <p>Expression of Egr-1 protein in human bladder cancer was examined by immunohistochemistry, on a tissue microarray constructed from tumors from 289 patients with non-muscle invasive urothelial bladder cancer.</p> <p>Results</p> <p>The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling were found to localize at the tumor front in some of the tumor biopsies.</p> <p>Conclusion</p> <p>The results from this study support a potential involvement of Egr-1 in the progression from non-muscle invasive bladder cancers to muscle invasive bladder cancer.</p

    Gene expression profiling of noninvasive primary urothelial tumours using microarrays

    Get PDF
    At present, the mechanism leading to bladder cancer is still poorly understood, and our knowledge about early events in tumorigenesis is limited. This study describes the changes in gene expression occurring during the neoplastic transition from normal bladder urothelium to primary Ta tumours. Using DNA microarrays, we identified novel differentially expressed genes in Ta tumours compared to normal bladder, and genes that were altered in high-grade tumours. Among the mostly changed genes between normal bladder and Ta tumours, we found genes related to the cytoskeleton (keratin 7 and syndecan 1), and transcription (high mobility group AT-hook 1). Altered genes in high-grade tumours were related to cell cycle (cyclin-dependent kinase 4) and transcription (jun d proto-oncogene). Furthermore, we showed the presence of high keratin 7 transcript expression in bladder cancer, and Western blotting analysis revealed three major molecular isoforms of keratin 7 in the tissues. These could be detected in urine sediments from bladder tumour patients
    corecore