136 research outputs found
Deep reinforcement learning for vehicle-to-grid control of long-term parked EVs : a case study of Oslo airport Gardermoen
There is a growing demand for electricity that leads to costly expansions of the grid capacity having to be made. Additionally this increase in demand also leads to the introduction of unregulated energy resources that causes greater variations in the electricity prices. Solutions needs to be developed to reduce the stress on the energy grid and the variations in the prices. One such solution is to use the batteries in electric vehicles (EVs) as batteries for the grid, also known as vehicle-to-grid (V2G). This case-study reviewed the potential use of the batteries of the long-term parked EVs at the P10 parking garage at Oslo airport Gardermoen for such V2G.
To be able to realise the full potential of the EVs for V2G algorithms have to be developed that can optimize the charging and discharging of the EVs. This thesis looked at a type of reinforcement learning (RL) algorithms called double deep Q-learning (DDQL), Genetic algorithms (GA) and a simple algorithm as potential algorithms for optimizing these charging and discharging decisions. The DDQL was divided into two separate versions, one called meanDDQL, that used the mean of the price data, and one called STD-DDQL that used the shape of the price data for optimization. The algorithms were tested for the Nissan Leaf EVs, that are a part of a very limited number of EVs that can work as grid batteries. The Nissan Leafs were optimized using the electricity price data from Nordpool for the years 2019, 2020 and 2021.
The tests showed that the GA was the best performing algorithm, followed by the mean-DDQL, the STD-DDQL and finally the simple algorithm. It was observed that the GA had long runtimes, but that this was not a problem for optimizing for the next 24 hours. Still for real-time optimization, or for optimization that needs to happen within seconds, then it was too slow and the DDQL algorithms were to be preferred.
It was further observed that if either of the DDQL algorithms were to be used then the mean-DDQL was a better choice than the STD-DDQL as it was more robust towards no-profit periods.
Using the optimal algorithm, GA, it was observed that under realistic conditions using the EVs for grid batteries would lead to an average earning of bellow 200 kr for the car owner for 2019 and 2020. For the year 2021 then the average profit was around 1500 NOK when using the GA for optimization. This showed that for a regular year then V2G used purely to earn a profit based on the daily price difference was low, and so the EVs should probably rather be optimized for power tariffs.M-TD
NEXIT: A Norwegian Decoupling Scenario in the European Power Market Implications of removing interconnector capacity
This thesis investigates the consequences of "NEXIT", the decoupling of Norway from the
European electricity market, as a contribution to the current electricity market debate in
Norway. Impacts on prices, social surplus, power flows and electricity market stakeholders
are illuminated. The analysis is conducted through an optimisation model, using data
from 17 selected European price areas over a 60 day time period in early 2022. By
looking at three distinct interconnectors to Germany, Great Britain and the Netherlands,
different NEXIT scenarios are compared and contrasted. This thesis is inspired by similar
investigations done on British decoupling, and analyses from Statnett on the impacts of
interconnectors.
Findings from this thesis suggest that NEXIT leads to a reduction of the total Norwegian
and European social surplus. Southern Norwegian price areas experience lower and more
stable prices, while Western Europe sees a price hike and increases in price variations.
Hourly prices in the south of Norway are simulated to fall âŹ12 /MWh or 9% on average
if all interconnectors are disconnected simultaneously. This causes a similar drop in
southern Swedish prices. In Western Europe, Great Britain and the Netherlands are
the most affected, with a price hike of 15%. Consumers in the south of Norway benefit
from the lower prices, but this is outweighed by losses to Norwegian producer surplus
and congestion rent, causing an hourly net loss âŹ1 2 4 000 in social surplus on average.
Overall for Europe, the impact of disconnecting all three interconnectors amounts to
an hourly average loss in social surplus of âŹ2 4 0 000. Congestion in the Nordic power
grid isolates the effects of NEXIT to the southern price areas in Norway and Sweden.
A key limitation of the thesis is assessed through a sensitivity analysis accounting for
changes to water-values. The sensitivity analysis suggests that the NEXIT impact on
water values significantly affects results on prices and social surplus. Results are contingent
on the current power mixes, which are likely to change in the future. A Norwegian exit
from the European electricity market would nevertheless be expected to have far ranging
consequences on prices and social surplus in Norway and Europe.nhhma
What does your profile picture say about you? The accuracy of thin-slice personality judgments from social networking sites made at zero-acquaintance
The myocardium exhibits heterogeneous nature due to scarring after Myocardial Infarction (MI). In Cardiac Magnetic Resonance (CMR) imaging, Late Gadolinium (LG) contrast agent enhances the intensity of scarred area in the myocardium.
In this paper, we propose a probability mapping technique using Texture and Intensity features to describe heterogeneous nature of the scarred myocardium in Cardiac Magnetic Resonance (CMR) images after Myocardial Infarction (MI). Scarred tissue and non-scarred tissue are represented with high and low probabilities, respectively. Intermediate values possibly indicate areas where the scarred and healthy tissues are interwoven. The probability map of scarred myocardium is calculated by using a probability function based on Bayes rule. Any set of features can be used in the probability function.
In the present study, we demonstrate the use of two different types of features. One is based on the mean intensity of pixel and the other on underlying texture information of the scarred and non-scarred myocardium. Examples of probability maps computed using the mean intensity of pixel and the underlying texture information are presented. We hypothesize that the probability mapping of myocardium offers alternate visualization, possibly showing the details with physiological significance difficult to detect visually in the original CMR image.
The probability mapping obtained from the two features provides a way to define different cardiac segments which offer a way to identify areas in the myocardium of diagnostic importance (like core and border areas in scarred myocardiu
"Den som har begge bena pü jorda, stür stille" : en studie av hvorfor politiet viderefører det straffeforfølgende paradigmet for ü redusere distribusjonen av narkotika i Norges tre største byer og hvordan videreføringen püvirker det forebyggende paradigmet
I masteroppgaven utforskes politiets mottakelighet for en kunnskapsintensiv og vitenskapeliggjort praksis. Temaet operasjonaliseres gjennom ü undersøke hvorfor politiet viderefører straffeforfølgningsparadigmet for ü redusere distribusjonen av narkotika i Norges tre største byer, selv om det ikke gir de resultatene man ønsker pü bruker og samfunn. Oppgaven undersøker ogsü hvordan straffeforfølgningsparadigmet püvirker utviklingen av et kunnskapsintensivt og vitenskapeliggjort forebyggende paradigme.
Sentrale funn i oppgaven er at en praksis forankret i straffeforfølgningsparadigmet og straffens avskrekkende effekt tas for gitt. Det er derfor ikke vanlig ü stille spørsmül om hvorfor straffeforfølgningsparadigmet ikke gir de resultatene man ønsker, og hvorfor politiet viderefører dagens praksis. Politiets oppgaver innebÌrer ü hündtere ulike og ofte uavklarte krav fra omgivelsene. Dermed oppstür det en usikkerhet i politiorganisasjonen som skaper et ubehag som mü hündteres. Forfatteren prøver ü forstü den sosiale usikkerhetens betydning for politiets praksis gjennom et bredt begrepsapparat og teorier. Han undersøker ogsü politiets mottakelighet for en kunnskapsintensiv og vitenskapeliggjort praksis gjennom relasjonen mellom politikk, struktur og kultur, sett gjennom politiets øyne
Fenomenet auditiv nevropati hos sped- og smĂĽbarn : En kvalitativ kunnskapsoppsummering
Bakgrunn og formĂĽl:
Motivasjon for temavalg relaterer seg til et ønske om ü legge grunnlag for
oppfølgingstilbud av faglig god kvalitet for de barn som tidlig diagnostiseres med
auditiv nevropati (AN). Ăkt oppmerksomhet om tilstanden i det hørselsfaglige feltet
samt innføring av hørselsscreening blant alle nyfødte fra 2008 innebÌrer at det
audiopedagogiske praksisfeltet vil ha behov for spesifikk kunnskap. FormĂĽlet med
denne eksplorerende teoretiske studien er ĂĽ frembringe et forskningsbasert
kunnskapsgrunnlag med relevans for det spesialpedagogiske praksisfeltet spesielt og
hørselsfeltet generelt.
Problemstilling:
Hva finnes av forskningsbasert kunnskap om fenomenet auditiv nevropati hos spedog
smübarn? Dette spørsmület vil bli utdypet gjennom en bred kartlegging av
tilgjengelig, oppdatert og relevant forskning om tilstanden. Forskningsspørsmül
knyttet til problemstillingen vil bli vektlagt i ulike grad. Spørsmül om forekomst,
diagnostikk og ürsaker/risikofaktorer berøres i kortere avsnitt. Spørsmül om prognose
og habilitering synes mest relevant i et spesialpedagogisk perspektiv, og er derfor
vektlagt i større grad. Del to av problemstillingen knytter seg til hvilke implikasjoner
slik kunnskap kan gi for spesialpedagogisk praksis, i lys av at tilstanden primĂŚrt er
beskrevet av forskere innen medisinsk og teknisk audiologi.
Metode:
Vitenskapelige tidsskriftartikler ble identifisert gjennom systematiske søk i
elektroniske databaser tilgjengelige i UiOs biblioteksystem. ForhĂĽndsbestemte
seleksjonskriterier resulterte i 16 artikler med relevans for problemstillingen.
Studienes metodiske kvalitet ble vurdert ved bruk av sjekklister for ulike
forskningsdesign. Data fra de inkluderte studiene er trukket ut og sammenstilt i et
dataekstraksjonsskjema. Forskningsfunn presenteres og analyseres i form av en
kvalitativ oppsummering. I drøftingen settes det fokus pü hvordan funn fra
forskningen kan kombineres med kunnskap og erfaring som finnes i hørselsfeltet.
Konklusjoner:
Kunnskapsutvikling om auditiv nevropati mĂĽ fremdeles anses ĂĽ vĂŚre i en tidlig fase.
Kunnskapen er betydelig utvidet siden den første store studien ble publisert i 1996
(Starr m.fl), men fremdeles gjenstür mange ubesvarte spørsmül.
⢠Forekomst av auditiv nevropati antas ü vÌre pü ca. 10 % blant de som har et
sensorinevralt hørselstap. Ulike innleggingskriterier i nyfødtintensivavdelinger
og ulike retest-prosedyrer gjør det imidlertid vanskelig ü si noe sikkert. Det er
rimelig ĂĽ tro at det er underrapportering i gruppen ungdom og voksne med
tilstanden, og at feildiagnostisering forekommer.
⢠En âelektrofysiologisk profil forenlig med auditiv nevropatiâ avdekkes pĂĽ
bakgrunn av patologiske ABR-mønstre i kombinasjon med püvist funksjon i
ytre hürceller. Med økt kunnskap om skadested er det forventet at diagnosen pü
sikt vil spesifiseres ytterligere. Utredning er mer tidkrevende og komplisert enn
ved sensorinevrale hørselstap.
⢠I gruppen sped- og smübarn som für diagnosen auditiv nevropati, har en
betydelig andel opplevd alvorlige komplikasjoner i nyfødtperioden og/eller de
kan ha en familiehistorie som innebÌrer risikofaktorer for hørselstap. En liten
andel har ingen kjente risikofaktorer.
⢠Hørselsvansken vil ha uforutsigbar innvirkning pü barnets muligheter til ü
tilegne seg talesprĂĽk. Bruk av visuell kommunikasjon, forsiktig
høreapparatutprøving og i mange tilfeller bruk av cochleaimplantat er etablerte
habiliteringsstrategier. Enkelte barn har tilfredsstillende nytte av høreapparat.
Cochleaimplantat gir variabelt, men i mange tilfeller godt, utbytte.
⢠Kartlegging av hørsels-, sprük- og kommunikasjonsforutsetninger er vesentlig
for ĂĽ kunne sette i verk hensiktsmessige tiltak. RĂĽdgivning basert pĂĽ kunnskap
om tilstanden i kombinasjon med et samordnet tjenestetilbud antas ĂĽ vĂŚre
positive faktorer i foreldres mestrings- og tilpasningsprosess
Optimizing support vector machines and autoregressive integrated moving average methods for heart rate variability data correction
Heart rate variability (HRV) is the variation in time between successive heartbeats and can be used as an indirect measure of autonomic nervous system (ANS) activity. During physical exercise, movement of the measuring device can cause artifacts in the HRV data, severely affecting the analysis of the HRV data. Current methods used for data artifact correction perform insufficiently when HRV is measured during exercise. In this paper we propose the use of autoregressive integrated moving average (ARIMA) and support vector regression (SVR) for HRV data artifact correction. Since both methods are only trained on previous data points, they can be applied not only for correction (i.e., gap filling), but also prediction (i.e., forecasting future values). Our paper describes:
⢠why HRV is difficult to predict and why ARIMA and SVR might be valuable options.
⢠finding the best hyperparameters for using ARIMA and SVR to correct HRV data, including which criterion to use for choosing the best model.
⢠which correction method should be used given the data at hand.publishedVersio
Recurrent Neural Networks for Artifact Correction in HRV Data During Physical Exercise
In this paper, we propose the use of recurrent neural networks (RNNs) for artifact correction and analysis of heart rate variability (HRV) data. HRV can be a valuable metric for determining the function of the heart and the autonomic nervous system. When measured during exercise, motion artifacts present a significant challenge. Several methods for artifact correction have previously been proposed, none of them applying machine learning, and each presenting some limitations regarding an accurate representation of HRV metrics. RNNs offer the ability to capture patterns that might otherwise not be detected, yielding predictions where no prior physiological assumptions are needed.
A hyperparameter search has been carried out to determine the best network configuration and the most important hyperparameters. The approach was tested on two extensive multi-subject data sets, one from a recreational bicycle race and the other from a laboratory experiment. The results demonstrate that RNNs outperform by order of magnitude existing methods with respect to the calculation of derived HRV metrics. However, they are not able to accurately fill in individual missing RR intervals in sequence. Future research should pursue improvements in the prediction of RR interval lengths and reduction in necessary training data.publishedVersio
- âŚ