189 research outputs found

    The Svalbard branch of the West Spitsbergen Current: Hydrography, transport and mixing

    Get PDF
    Data from a 10 days shipboard survey in August 2015, northwest of Svalbard, are used to investigate the transport, structure and mixing of Atlantic water (AW) along the Svalbard branch and Yermak branch of the West Spitsbergen Current. Using the common definition of AW, the volume transport south and north of the Yermak Plateau (YP) is estimated to be 3.6 (3.4, 3.7) Sv and 1.1 (1.1, 1.3) Sv respectively, where the upper and lower bounds are inferred from the sensitivity to the choice of streamtubes. The current south and north of YP is horizontally symmetric, with surface-enhanced geostrophic velocities. On YP the symmetry breaks down, and the current spreads out and weakens over the flat plateau, with intensified currents near the steep continental slope. Volume transport across YP is 0.8 (0.5, 1.3) Sv. In addition to a well-defined Svalbard branch, current measurements show recirculation north of the Molly Hole. At the time of the survey, AW temperatures and salinities north of 79◩N are found to be significantly higher than shown by the Monthly Isopycnal and Mixed-layer Ocean Climatology. Microstructure measurements show a net surface heating of 1-2 W m^−2 of the AW layer. The downstream temperature and salinity gradients show cooling and freshening rates of 0.15◩C and 0.016 g kg^−1 per 100 km along path distance. The observed cooling rates cannot be accounted for by the vertical turbulent heat flux. Isopycnal diffusion in an eddy field north of YP is capable of cooling the current at observed rates, and can generate lower Arctic intermediate water in the process.MasteroppgĂ„ve i meteorologi og oseanografiMAMN-GEOFGEOF39

    Atlantic water inflow into the Arctic Ocean: studies of pathways, transport and mixing processes using observations from ships and autonomous underwater vehicles

    Get PDF
    Nordishavet spiller en viktig rolle i det globale klimasystemet. Produksjon av kaldt vann med hĂžy tetthet, samt frysing av sjĂžis i Arktis, bidrar til Ă„ drive den Atlantiske meridionale omveltningssirkulasjonen og kan pĂ„virke atmosfĂŠrens sirkulasjonsmĂžnstre sĂ„ langt sĂžr som til midlere breddegrader. Atlanterhavsvann som strĂžmmer gjennom Framstredet og Barentshavet, inn i Arktis, regulerer bĂ„de produksjonen av vann med hĂžy tetthet og utstrekningen av sjĂžis. Dermed har Atlanterhavsvann en nĂžkkelrolle i Arktis og det globale klimasystemet som helhet. Denne studien beskriver innstrĂžmningsveiene til Atlanterhavsvann, samt de underliggende mekanismene som styrer innstrĂžmningen, prosessene for varmetap og blanding med de Arktiske vannmassene nord for Svalbard og i det nordvestlige Barentshavet. Data samlet inn ved hjelp av autonome undervannsfartĂžy (AUV-er) er sentrale i denne studien. Mer enn 15 000 hydrografiske profiler er samlet inn i lĂžpet av fem tokt og elleve AUV-oppdrag mellom 2018 og 2022, og er presentert i form av fire artikler. Data er samlet inn som en del av prosjektet Arven etter Nansen. Ved bruk av observasjoner langs kontinentalskrĂ„ningen nord for Svalbard, mellom 12°Ø og 24°Ø, beskriver vi hydrografisk struktur, volumtransport og sirkulasjonsmĂžnstre til AtlanterhavsgrensestrĂžmmen. Volumtransporten til grensestrĂžmmen nĂ„r et maksimum pĂ„ 3.0 ± 0.2 Sv i oktober, men styrken til grensestrĂžmmen er fĂžlsom for vindstress, og dobler volumtransporten sin pĂ„ mindre enn en uke nĂ„r gjennomsnittlig vindstress over regionen endrer seg. En tidligere ukjent bunnintensivert vannstrĂžm observeres Ă„ strĂžmme parallelt med grensestrĂžmmen mellom 1500 og 2000 meter dybdekonturene. Historiske data i regionen stĂžtter tilstedevĂŠrelsen av den bunnintensiverte vannstrĂžmmen. OppfĂžlgingsstudiene konsentrerte seg om det nordvestlige Barentshavet. MĂ„lrettede mĂ„linger ved bruk av AUV-er gir en stor forbedring i romlig og tidsmessig dekning av observasjoner. For Ă„ utnytte teknologien, spesielt ved mĂ„linger av turbulens, utforsket vi potensialet til en propelldrevet AUV. Vi utstyrte AUV-en med en turbulenspakke og rapporterer datakvaliteten, samt diskuterer begrensningene av dissipasjonsestimater fra skjĂŠrsensorene. Det propelldrevet AUV-oppdraget i Barentshavet, vinteren 2021, varte i 5 timer, og AUV-en hadde en typisk horisontal hastighet pĂ„ 1.1 m/s. AUV-en ble programmert for Ă„ finne og krysse maksimal temperaturgradient pĂ„ 10, 20 og 30 m dyp langs 4 km strekk. Selv om AUV-vibrasjonene, pĂ„ grunn av propellen, forstyrrer mĂ„lingene med skjĂŠrsensorene, filtreres stĂžyen bort ved Ă„ fjerne vibrasjonsinduserte komponenter fra skjĂŠr-spekter ved bruk av akselerometersignal. Dissipasjonsestimatene fra AUV-en viser god overensstemmelse med nĂŠrliggende vertikale mikrostrukturprofiler fra skip, noe som indikerer at turbulensmĂ„lingene fra oppsettet er pĂ„litelige for dette relativt turbulente miljĂžet. Sirkulasjonsveier, hydrografi og volumtransport av Atlanterhavsvann og Arktiske vann i det nordvestlige Barentshavet utforskes ved hjelp av data fra tre tokt og ni glideroppdrag gjennomfĂžrt mellom 2019 og 2022, samt historiske data samlet mellom 1950 og 2009. Vi setter sĂžkelys pĂ„ utveksling og dynamikk pĂ„ tvers av Polarfronten og nĂŠrliggende omrĂ„de. Observasjonene vĂ„re viser at 0.9 ± 0.1 Sv av Atlanterhavvann nĂ„r Polarfront-regionen fĂžr vannet sprer seg langs flere forgreninger og til slutt dykker under Arktiske vannmasser. Mengden Atlanterhavsvann som lagres nord for Polarfronten kontrolleres av tetthetsforskjellen mellom Atlanterhavsvannet og det Arktiske vannet, og nĂ„dde et maksimum pĂ„ 90-tallet da det Arktiske vannet nord for fronten var spesielt ferskt. I nyere tid (2019 til 2022) ble Atlanterhavsvannet som strĂžmmer inn i Barentshavet opptil 0.1 g/kg ferskere sammenlignet med tidligere tiĂ„r. Dette fĂžrte til en Ăžkt temperaturgradient pĂ„ tvers av Polarfronten og en redusert transport av varmt vann nordover pĂ„ tvers av fronten. Ved bruk av data fra to tokt og fire glider-oppdrag, spesifikt samlet for Ă„ undersĂžke dynamikken og variabiliteten til Polarfronten, beskriver vi strukturen til fronten, dens variasjon og forekomsten av blanding av vannmasser. Vi observerer at varmt og salt Atlanterhavsvann trenger inn under kaldere og ferskere Arktisk vann, noe som setter opp en baroklin front og en geostrofisk strĂžm med hastigheter opp mot 25 cm/s. Den estimerte Ăžstlige transporten fra den geostrofiske strĂžmmen er 0.3 ± 0.2 Sv. Korttidsvariasjoner i dypet, under Ăžvre grenselag, skyldes tidevannsstrĂžmmer og mesoskala virvler. Effektene av tidevannsstrĂžmmer er hovedsakelig begrenset til bunnsjiktet, mens virvlene betydelig pĂ„virker posisjonen til fronten og endrer helningen til tetthetslinjene og fĂžlgelig den tilgjengelige potensielle energien i fronten. Betydelig transformasjon av vannmasser observeres pĂ„ tvers av fronten, noe som sannsynligvis skyldes virvelindusert blanding langs tetthetskonturene. Til tross for sesongendringer i de Ăžvre grenselag pĂ„ tvers av fronten (0-100 m), forble posisjonen til fronten under 100 m dybde relativt uforstyrret. Samlet sett har artiklene i denne avhandlingen bidratt til Ă„ Ăžke vĂ„r kunnskap om innstrĂžmmingen av Atlanterhavsvann i Nordishavet, dens veier og mekanismer som kontrollerer blandingen og distribusjonen av varme fra Atlanterhavsvannet til de omkringliggende Arktiske vannmassene. Dette arbeidet representerer et viktig skritt i retning av Ă„ forstĂ„ Atlanterhavsvannet sin innflytelse pĂ„ Nordishavet, noe som er avgjĂžrende for bĂŠrekraftig forvaltning og for Ă„ forutsi fremtiden til de Arktiske Ăžkosystemene.The Arctic Ocean plays an important role in the global climate system. Dense water production and sea ice freezing in the Arctic contribute to the functioning of the Atlantic Meridional Overturning Circulation and can affect atmospheric circulation patterns as far south as mid-latitudes. The Atlantic Water (AW) inflow through Fram Strait and Barents Sea into the Arctic Ocean regulates both the dense water production and the sea-ice extent, thus has a key role in the Arctic Ocean and the global climate system. The transport of AW into the Arctic is the major heat and salt source to the Arctic Ocean and influences the onset of freezing and the functioning of marine ecosystems. This research contributes to the understanding of the inflow of AW into the Arctic Ocean through Fram Strait and the Barents Sea. The study describes the pathways of the AW inflow, as well as the underlying mechanisms controlling the inflow, processes of heat loss, and mixing with the surrounding waters north of Svalbard and in the northwestern Barents Sea. Essential to this study is data collected by means of autonomous underwater vehicles (AUVs) in challenging Arctic conditions. Data collected from five scientific cruises and 11 AUV missions between 2018 and 2022, resulting in more than 15,000 hydrographic profiles, are collated and presented in the form of four research papers. All data are collected as part of the Nansen Legacy project. Using detailed observations in the region along the continental slope north of Svalbard between 12°E and 24°E, we describe the hydrographic structure, volume transport, and circulation patterns of the warm AW boundary current. The AW volume transport reaches a maximum of 3.0 ± 0.2 Sv in October, with an intraseasonal variability of 1 Sv. The strength of the AW boundary current is sensitive to the wind stress curl, doubling its volume transport in less than a week when the wind stress curl averaged over the region transitioned from strongly negative to strongly positive values. A previously unknown, deep bottom-intensified current is observed to flow parallel to the boundary current, between the 1,500 and 2,000 m isobaths. Historical data in the region support the presence of the bottom-intensified current. The follow-up studies concentrated on the northwestern Barents Sea. Targeted measurements from AUVs offer a step change in the spatial and temporal coverage of observations. To exploit the technology, particularly for turbulence measurements, we explored the potential of a thruster-propelled AUV. We instrumented the AUV with a turbulence sensor package, and using this novel setup, we report on the data quality and discuss the limitations of turbulence dissipation rate estimates from shear probes. The AUV mission in the Barents Sea in winter lasted for 5 h, operating at a typical horizontal speed of 1.1 m/s. The AUV was programmed to find and cross the maximum along-path thermal gradient at 10, 20 and 30 m depths along 4 km transects. Although the AUV vibrations contaminate the shear probe records, the noise is mitigated by removing vibration-induced components from shear spectra using the accelerometer signal. Dissipation estimates from the AUV show good agreement with nearby vertical microstructure profiles obtained from ship, indicating that the turbulence measurements from the AUV are reliable for this relatively turbulent environment. Circulation pathways, hydrography and volume transports of Atlantic- and Arctic-origin waters on the northwestern Barents Sea are explored using data from three cruises and nine glider missions conducted between 2019 and 2022, as well as historical data collected between 1950 and 2009. In particular, we focus on the exchange and dynamics across the thermohaline polar front (PF) region. Our observations show that 0.9 ± 0.1 Sv of Atlantic-origin water reaches the PF region before splitting into several branches and eventually subducting beneath Polar Water (PW). The amount of Atlantic-origin water stored in the basin north of the PF is controlled by the density difference between AW and PW, and reached a maximum in the 90s when PW was particularly fresh. In the recent period from 2019 to 2022, the inflow of AW into the Barents Sea freshened by up to 0.1 g/kg compared to previous decades. This led to an increased temperature gradient across the PF and a reduced poleward transport of warm water. Using data targeted to resolve the dynamics and variability of the PF, we describe the structure of the front, its variability and associated mixing. Ocean stratification, currents, and turbulence data were obtained during seven ship transects across the PF near 77°N, 30°E in fall and winter conditions. These transects are complemented by nine glider missions using ocean gliders, one of which was equipped with microstructure sensors to measure turbulence. Across the front, we observe warm and salty AW intruding below the colder and fresher PW, setting up a baroclinic front and geostrophic currents reaching 25 cm/s, with estimated eastward transport of 0.3 ± 0.2 Sv. Short-term variability below the surface mixed layer arises from tidal currents and mesoscale eddies. While the effects of tidal currents are mainly confined to the bottom boundary layer, eddies induce significant shifts in the position of the front, and alter the isopycnal slopes and the available potential energy of the front. Substantial water mass transformation is observed across the front, likely a result of eddy-driven isopycnal mixing. Despite the seasonal changes in the upper layers of the front (0–100 m) influenced by atmospheric forcing, sea ice formation, and brine rejection, the position of the front beneath 100 m depth remained relatively unperturbed. Collectively, the papers in this thesis have advanced our knowledge about the AW inflow into the Arctic Ocean, its pathways and mechanisms controlling the mixing and distribution of heat from AW to the surrounding Arctic waters. This work represents an important step towards comprehending the influence of AW on the Arctic Ocean, essential for sustainable management and predicting the future of Arctic marine ecosystems.Doktorgradsavhandlin

    Hvilke tiltak har barnehagen satt i gang for Ă„ redusere stress hos de minste barna i tilvenningsperioden?

    Get PDF
    Å starte i barnehagen er den fĂžrste store overgangen i et barns liv (Drugli, Lekhal og BuĂžen, 2020, s. 21). Det er derfor ikke uvanlig Ă„ oppleve denne perioden som litt utfordrende. SpĂžrsmĂ„let er hvordan de voksne praktiserer tilvenningsplanen og hva de gjĂžr for Ă„ kunne gi barna en fin start i barnehagen. Hos de minste i barnehagen er det blitt mĂ„lt et hĂžyere nivĂ„ av stresshormonet kortisol, dette kommer mye av at smĂ„ barn ofte blir lettere stresset enn voksne (Helle & FlĂžgstad, 2019, s. 67). De er smĂ„ og har lite erfaring nĂ„r det kommer til regulering av fĂžlelser, derfor tenkte jeg det kunne vĂŠrt spennende Ă„ se mer direkte pĂ„ hva Emnekode: BNBAC3900 Kandidatnummer: 44 4 barnehagen faktisk gjĂžr for Ă„ hjelpe barna med Ă„ redusere stressnivĂ„et. Stress kan man finne over alt, men for Ă„ begrense oppgaven min har jeg rettet temaet mot de minste barna i tilvenningsperioden. PĂ„ denne mĂ„ten blir det lettere Ă„ kunne svare godt pĂ„ problemstillingen som ble; «Hvilke tiltak har barnehagen satt i gang for Ă„ redusere stress hos de minste barna i tilvenningsperioden?». Tilvenningsperioden i denne sammenheng vil omhandle den fĂžrste tiden etter at barnet har startet i barnehagen.publishedVersio

    Structure and drivers of ocean mixing north of Svalbard in summer and fall 2018

    Get PDF
    The Arctic Ocean is a major sink for heat and salt for the global ocean. Ocean mixing contributes to this sink by mixing the Atlantic- and Pacific-origin waters with surrounding waters. We investigate the drivers of ocean mixing north of Svalbard, in the Atlantic sector of the Arctic, based on observations collected during two research cruises in summer and fall 2018. Estimates of vertical turbulent heat flux from the Atlantic Water layer up to the mixed layer reach 30 W m−2 in the core of the boundary current, and average to 8 W m−2, accounting for ∌1 % of the total heat loss of the Atlantic layer in the region. In the mixed layer, there is a nonlinear relation between the layer-integrated dissipation and wind energy input; convection was active at a few stations and was responsible for enhanced turbulence compared to what was expected from the wind stress alone. Summer melting of sea ice reduces the temperature, salinity and depth of the mixed layer and increases salt and buoyancy fluxes at the base of the mixed layer. Deeper in the water column and near the seabed, tidal forcing is a major source of turbulence: diapycnal diffusivity in the bottom 250 m of the water column is enhanced during strong tidal currents, reaching on average 10−3 m2 s−1. The average profile of diffusivity decays with distance from the seabed with an e-folding scale of 22 m compared to 18 m in conditions with weaker tidal currents. A nonlinear relation is inferred between the depth-integrated dissipation in the bottom 250 m of the water column and the tidally driven bottom drag and is used to estimate the bottom dissipation along the continental slope of the Eurasian Basin. Computation of an inverse Froude number suggests that nonlinear internal waves forced by the diurnal tidal currents (K1 constituent) can develop north of Svalbard and in the Laptev and Kara seas, with the potential to mix the entire water column vertically. Understanding the drivers of turbulence and the nonlinear pathways for the energy to turbulence in the Arctic Ocean will help improve the description and representation of the rapidly changing Arctic climate system.publishedVersio

    Progression of tool usage in project-based IT courses

    Get PDF
    acceptedVersio

    Learning through construction in IT courses

    Get PDF
    In the Norwegian Center for Excellence in IT education (Excited), there are 19 IT study programs across two universities with six campuses. One of the goals of Excited is to gain more knowledge about “learning through construction”(LtC) in IT studies. The paper presents preliminary findings on characteristics of courses with “learning through construction” in bachelor and master courses with project-based learning in the spring semester of 2017. The LtC courses are characterized through a number of variables from a categorization model of project courses: teaching context, range of implementation, learning context, institutional context, personnel composition, grading, project variety, degrees of freedom of the process and in the deliverables. Our findings show that “learning through construction” is often used as a learning method in higher IT education because constructive skills are a highly valued learning outcome, and to develop such skills, it is necessary to practice. At the same time, the teachers conclude that the learning method is motivating for students and is stimulating creative thinking, and that project work is useful because the students will be better prepared for project work also after their studies. Our findings also shows that there are “learning through construction” courses on all study years of the bachelor and master study programs, and that some study programs have a maker focus in each semester. Some projects are individual work, but the majority of the projects are group work, often in small (2-4) or medium-sized (5-10) teams. Most of the time, the students organize the teams themselves, but in some cases the teams are set up by the faculty. When it comes to student autonomy, the students experience more freedom further into their education, as there are more flexible project processes in the later study years. The products of the student projects are typically software prototypes and product documentation/software design, more specifically the main product types are games and web applications. Some courses with learning through construction use external stakeholders in the student projects. The study also shows that the implementation of learning through construction projects varies across study years and study programs.publishedVersio
    • 

    corecore