15 research outputs found
Recommended from our members
Flash flood simulations for an Egyptian city - mitigation measures and impact of infiltration
Within this work, the impact of mitigation measures and infiltration on flash floods is investigated by using a 2D robust shallow water model including infiltration with the Green-Ampt model. The results show the combined effects of infiltration and mitigation measures as well as the effectiveness of bypass channels in addition to retention basins. Retention basins at appropriate locations could reduce the maximum water depth at critical locations by 23%, while the additional implementation of drainage channels lead to a reduction of 75%, considering also infiltration lead to a further reduction of 97%. If infiltration was considered without mitigation measures, the peak water depth was reduced by 67%. For an exceptional extreme event the measures lead to a reduction of 73% at some locations, while at other locations the overflow from retention basins due to overstraining generated even higher inundations with an increase of 58%
SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics
The Simulation EnviRonment for Geomorphology, Hydrodynamics, and Ecohydrology in Integrated form (SERGHEI) is a multi-dimensional, multi-domain, and multi-physics model framework for environmental and landscape simulation, designed with an outlook towards Earth system modelling. At the core of SERGHEI's innovation is its performance-portable high-performance parallel-computing (HPC) implementation, built from scratch on the Kokkos portability layer, allowing SERGHEI to be deployed, in a performance-portable fashion, in graphics processing unit (GPU)-based heterogeneous systems. In this work, we explore combinations of MPI and Kokkos using OpenMP and CUDA backends. In this contribution, we introduce the SERGHEI model framework and present with detail its first operational module for solving shallow-water equations (SERGHEI-SWE) and its HPC implementation. This module is designed to be applicable to hydrological and environmental problems including flooding and runoff generation, with an outlook towards Earth system modelling. Its applicability is demonstrated by testing several well-known benchmarks and large-scale problems, for which SERGHEI-SWE achieves excellent results for the different types of shallow-water problems. Finally, SERGHEI-SWE scalability and performance portability is demonstrated and evaluated on several TOP500 HPC systems, with very good scaling in the range of over 20 000 CPUs and up to 256 state-of-the art GPUs
Understanding the hydrological response of a headwater-dominated catchment by analysis of distributed surface–subsurface interactions
We computationally explore the relationship between surface–subsurface exchange and hydrological response in a headwater-dominated high elevation, mountainous catchment in East River Watershed, Colorado, USA. In order to isolate the effect of surface–subsurface exchange on the hydrological response, we compare three model variations that differ only in soil permeability. Traditional methods of hydrograph analysis that have been developed for headwater catchments may fail to properly characterize catchments, where catchment response is tightly coupled to headwater inflow. Analyzing the spatially distributed hydrological response of such catchments gives additional information on the catchment functioning. Thus, we compute hydrographs, hydrological indices, and spatio-temporal distributions of hydrological variables. The indices and distributions are then linked to the hydrograph at the outlet of the catchment. Our results show that changes in the surface–subsurface exchange fluxes trigger different flow regimes, connectivity dynamics, and runoff generation mechanisms inside the catchment, and hence, affect the distributed hydrological response. Further, changes in surface–subsurface exchange rates lead to a nonlinear change in the degree of connectivity—quantified through the number of disconnected clusters of ponding water—in the catchment. Although the runoff formation in the catchment changes significantly, these changes do not significantly alter the aggregated streamflow hydrograph. This hints at a crucial gap in our ability to infer catchment function from aggregated signatures. We show that while these changes in distributed hydrological response may not always be observable through aggregated hydrological signatures, they can be quantified through the use of indices of connectivity
Recommended from our members
Wavelet-based local mesh refinement for rainfall–runoff simulations
A wavelet-based local mesh refinement (wLMR) strategy is designed to generate multiresolution and unstructured triangular meshes from real digital elevation model (DEM) data for efficient hydrological simulations at the catchment scale. The wLMR strategy is studied considering slope- and curvature-based refinement criteria to analyze DEM inputs: the slope-based criterion uses bed elevation data as input to the wLMR strategy, whereas the curvature-based criterion feeds the bed slope data into it. The performance of the wLMR meshes generated by these two criteria is compared for hydrological simulations; first, using three analytical tests with the systematic variation in topography types and then by reproducing laboratory- and real-scale case studies. The bed elevation on the wLMR meshes and their simulation results are compared relative to those achieved on the finest uniform mesh. Analytical tests show that the slope- and curvature-based criteria are equally effective with the wLMR strategy, and that it is easier to decide which criterion to take in relation to the (regular) shape of the topography. For the realistic case studies: (i) slope analysis provides a better metric to assess the correlation of a wLMR mesh to the fine uniform mesh and (ii) both criteria predict outlet hydrographs with a close predictive accuracy to that on the uniform mesh, but the curvature-based criterion is found to slightly better capture the channeling patterns of real DEM data
Recommended from our members
A mass-conservative predictor-corrector solution to the 1D Richards equation with adaptive time control
The predictor-corrector-type (P-C) numerical solution to the 1D Richards equation only requires one matrix inversion operation per time step, making it attractive in terms of computational cost. However, the mass conservation could be violated at the saturated-unsaturated interface. A new post-allocation procedure is designed for the P-C method, which redistributes moisture after the corrector step to achieve strict mass balance. A novel adaptive time-stepping strategy is proposed to further improve model efficiency and robustness. It adjusts time step size based on both moisture difference and the Courant number. The proposed solution method and time control strategies are tested and compared with an analytical solution, the previous P-C solution and other existing iterative solutions. The new method shows good conservation property and good agreements to the existing solutions. Compared to the iterative methods that occasionally experience convergence issues, the proposed P-C method is more robust. The new time-control strategy improves computational efficiency compared to the original P-C method, but it remains less efficient than iterative methods for most of the tested scenarios because of its explicit treatment of the corrector step
Recommended from our members
Hyperbolic Reformulation Approach to Enable Efficient Simulation of Groundwater Flow and Reactive Transport
We apply Cattaneo's relaxation approach to the one-dimensional coupled Boussinesq groundwater flow and advection-diffusion-reaction equations, commonly used in engineering applications to simulate contaminant transport in the subsurface. The diffusion-type governing equations are reformulated as a hyperbolic system, augmented by an equation that can be interpreted as a momentum balance. The hyperbolization enables an efficient unified computation of the primary variable and its gradients, for example piezometric head and unit discharge in the Boussinesq equation. An augmented Roe scheme is used to solve the hyperbolic system. The hyperbolized system of equations is studied in a set of steady state and transient test cases with idealized geometry. These test cases confirm the equivalence of the hyperbolic system to its original formulation. The larger time step size of the hyperbolic equation is verified theoretically by means of a stability analysis and numerically in the test cases. Finally, a reach-scale application of flow and transport across a river meander is considered. This application case shows that the performance of the hyperbolic relaxation approach holds for more realistic groundwater flow and transport problems, relevant to water resources management
Recommended from our members
Hyperbolic Reformulation Approach to Enable Efficient Simulation of Groundwater Flow and Reactive Transport
We apply Cattaneo's relaxation approach to the one-dimensional coupled Boussinesq groundwater flow and advection-diffusion-reaction equations, commonly used in engineering applications to simulate contaminant transport in the subsurface. The diffusion-type governing equations are reformulated as a hyperbolic system, augmented by an equation that can be interpreted as a momentum balance. The hyperbolization enables an efficient unified computation of the primary variable and its gradients, for example piezometric head and unit discharge in the Boussinesq equation. An augmented Roe scheme is used to solve the hyperbolic system. The hyperbolized system of equations is studied in a set of steady state and transient test cases with idealized geometry. These test cases confirm the equivalence of the hyperbolic system to its original formulation. The larger time step size of the hyperbolic equation is verified theoretically by means of a stability analysis and numerically in the test cases. Finally, a reach-scale application of flow and transport across a river meander is considered. This application case shows that the performance of the hyperbolic relaxation approach holds for more realistic groundwater flow and transport problems, relevant to water resources management
Recommended from our members
Flash flood simulations for an Egyptian city - mitigation measures and impact of infiltration
Within this work, the impact of mitigation measures and infiltration on flash floods is investigated by using a 2D robust shallow water model including infiltration with the Green-Ampt model. The results show the combined effects of infiltration and mitigation measures as well as the effectiveness of bypass channels in addition to retention basins. Retention basins at appropriate locations could reduce the maximum water depth at critical locations by 23%, while the additional implementation of drainage channels lead to a reduction of 75%, considering also infiltration lead to a further reduction of 97%. If infiltration was considered without mitigation measures, the peak water depth was reduced by 67%. For an exceptional extreme event the measures lead to a reduction of 73% at some locations, while at other locations the overflow from retention basins due to overstraining generated even higher inundations with an increase of 58%
An improved multislope MUSCL scheme for solving shallow water equations on unstructured grids
This paper describes an improved vector manipulation multislope monotone upstream-centred scheme for conservation laws (MUSCL) reconstruction for solving the shallow water equations on unstructured grids. This improved MUSCL reconstruction method includes a bigger stencil for the interpolation and saves time for determining the geometric relations compared to the original vector manipulation method, so it is computationally more efficient and straightforward to implement. Four examples involving an analytical solution, laboratory experiments and field-scale measurements are used to test the performance of the proposed scheme. It has been proved that the proposed scheme can provide comparable accuracy and higher efficiency compared to the original vector manipulation method. With the increase of the number of cells, the advantage of the proposed scheme becomes more apparent