32 research outputs found

    Augmented resolution of linear hyperbolic systems under nonconservative form

    Get PDF
    Hyperbolic systems under nonconservative form arise in numerous applications modeling physical processes, for example from the relaxation of more general equations (e.g. with dissipative terms). This paper reviews an existing class of augmented Roe schemes and discusses their application to linear nonconservative hyperbolic systems with source terms. We extend existing augmented methods by redefining them within a common framework which uses a geometric reinterpretation of source terms. This results in intrinsically well-balanced numerical discretizations. We discuss two equivalent formulations: (1) a nonconservative approach and (2) a conservative reformulation of the problem. The equilibrium properties of the schemes are examined and the conditions for the preservation of the well-balanced property are provided. Transient and steady state test cases for linear acoustics and hyperbolic heat equations are presented. A complete set of benchmark problems with analytical solution, including transient and steady situations with discontinuities in the medium properties, are presented and used to assess the equilibrium properties of the schemes. It is shown that the proposed schemes satisfy the expected equilibrium and convergence properties

    SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics

    Get PDF
    The Simulation EnviRonment for Geomorphology, Hydrodynamics, and Ecohydrology in Integrated form (SERGHEI) is a multi-dimensional, multi-domain, and multi-physics model framework for environmental and landscape simulation, designed with an outlook towards Earth system modelling. At the core of SERGHEI's innovation is its performance-portable high-performance parallel-computing (HPC) implementation, built from scratch on the Kokkos portability layer, allowing SERGHEI to be deployed, in a performance-portable fashion, in graphics processing unit (GPU)-based heterogeneous systems. In this work, we explore combinations of MPI and Kokkos using OpenMP and CUDA backends. In this contribution, we introduce the SERGHEI model framework and present with detail its first operational module for solving shallow-water equations (SERGHEI-SWE) and its HPC implementation. This module is designed to be applicable to hydrological and environmental problems including flooding and runoff generation, with an outlook towards Earth system modelling. Its applicability is demonstrated by testing several well-known benchmarks and large-scale problems, for which SERGHEI-SWE achieves excellent results for the different types of shallow-water problems. Finally, SERGHEI-SWE scalability and performance portability is demonstrated and evaluated on several TOP500 HPC systems, with very good scaling in the range of over 20 000 CPUs and up to 256 state-of-the art GPUs

    Understanding the hydrological response of a headwater-dominated catchment by analysis of distributed surface–subsurface interactions

    Get PDF
    We computationally explore the relationship between surface–subsurface exchange and hydrological response in a headwater-dominated high elevation, mountainous catchment in East River Watershed, Colorado, USA. In order to isolate the effect of surface–subsurface exchange on the hydrological response, we compare three model variations that differ only in soil permeability. Traditional methods of hydrograph analysis that have been developed for headwater catchments may fail to properly characterize catchments, where catchment response is tightly coupled to headwater inflow. Analyzing the spatially distributed hydrological response of such catchments gives additional information on the catchment functioning. Thus, we compute hydrographs, hydrological indices, and spatio-temporal distributions of hydrological variables. The indices and distributions are then linked to the hydrograph at the outlet of the catchment. Our results show that changes in the surface–subsurface exchange fluxes trigger different flow regimes, connectivity dynamics, and runoff generation mechanisms inside the catchment, and hence, affect the distributed hydrological response. Further, changes in surface–subsurface exchange rates lead to a nonlinear change in the degree of connectivity—quantified through the number of disconnected clusters of ponding water—in the catchment. Although the runoff formation in the catchment changes significantly, these changes do not significantly alter the aggregated streamflow hydrograph. This hints at a crucial gap in our ability to infer catchment function from aggregated signatures. We show that while these changes in distributed hydrological response may not always be observable through aggregated hydrological signatures, they can be quantified through the use of indices of connectivity

    (Multi)wavelets increase both accuracy and efficiency of standard Godunov-type hydrodynamic models: robust 2D approaches

    Get PDF
    Multiwavelets (MW) enable the compression, analysis and assembly of model data on a multiresolution grid within Godunov-type solvers based on second-order discontinuous Galerkin (DG2) and first-order finite volume (FV1) methods. Multiwavelet adaptivity has been studied extensively with one-dimensional (1D) hydrodynamic models (Kesserwani et al., 2019), revealing that MWDG2 can be 20 times faster than uniform DG2 and 2 times faster than uniform FV1, while preserving the accuracy and robustness of the underlying formulation. The potential of the MWDG2 scheme has yet to be studied for two-dimensional (2D) modelling, but this requires a design that robustly and efficiently solves the 2D shallow water equations (SWE) with complex source terms and wetting and drying. This paper presents a two-dimensional MWDG2 scheme that: (1) adopts a slope-decoupled DG2 solver as a reference scheme, for its ability to deliver well-balanced piecewise-planar solutions shaped by a simplified 3-component basis; and, (2) adapts the multiresolution analysis of multiwavelets for compatibility with the slope-decoupled DG2 basis. A scaled reformulation of slope-decoupled DG2 is presented alongside two multiwavelet approaches that yield MWDG2 schemes with similar properties, and a Haar wavelet FV1 (HFV1) variant for adapting piecewise-constant model data. The performance of the adaptive HFV1 and MWDG2 solvers is explored alongside their uniform counterparts, while analysing their accuracy, efficiency, grid-coarsening ability, reliability in handling wet-dry fronts across steep bed-slopes, and ability to capture features relevant to practical hydraulic modelling. The results indicate a particular multiwavelet approach that allows the MWDG2 scheme to exploit its grid-coarsening ability for the widest range of flow types. Results also indicate that the proposed (multi)wavelet-based adaptive schemes are even more efficient for the 2D case. Accompanying model software is openly available online
    corecore