196 research outputs found
The Selectivity of Milking of Dunaliella salina
The process of the simultaneous production and extraction of carotenoids, milking, of Dunaliella salina was studied. We would like to know the selectivity of this process. Could all the carotenoids produced be extracted? And would it be possible to vary the profile of the produced carotenoids and, consequently, influence the type of carotenoids extracted? By using three different D. salina strains and three different stress conditions, we varied the profiles of the carotenoids produced. Between Dunaliella bardawil and D. salina 19/18, no remarkable differences were seen in the extraction profiles, although D. salina 19/18 seemed to be better extractable. D. salina 19/25 was not “milkable” at all. The milking process could only be called selective for secondary carotenoids in case gentle mixing was used. In aerated flat-panel photobioreactors, extraction was much better, but selectiveness decreased and also chlorophyll and primary carotenoids were extracted. This was possibly related to cell damage due to shear stress
Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal
Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB0E02, doi:10.1029/2012GB004299.While much of the dissolved organic carbon (DOC) within rivers is destined for mineralization to CO2, a substantial fraction of riverine bicarbonate (HCO3−) flux represents a CO2 sink, as a result of weathering processes that sequester CO2 as HCO3−. We explored landscape-level controls on DOC and HCO3− flux in subcatchments of the boreal, with a specific focus on the effect of permafrost on riverine dissolved C flux. To do this, we undertook a multivariate analysis that partitioned the variance attributable to known, key regulators of dissolved C flux (runoff, lithology, and vegetation) prior to examining the effect of permafrost, using riverine biogeochemistry data from a suite of subcatchments drawn from the Mackenzie, Yukon, East, and West Siberian regions of the circumboreal. Across the diverse catchments that we study, controls on HCO3− flux were near-universal: runoff and an increased carbonate rock contribution to weathering (assessed as riverwater Ca:Na) increased HCO3− yields, while increasing permafrost extent was associated with decreases in HCO3−. In contrast, permafrost had contrasting and region-specific effects on DOC yield, even after the variation caused by other key drivers of its flux had been accounted for. We used ionic ratios and SO4 yields to calculate the potential range of CO2 sequestered via weathering across these boreal subcatchments, and show that decreasing permafrost extent is associated with increases in weathering-mediated CO2 fixation across broad spatial scales, an effect that could counterbalance some of the organic C mineralization that is predicted with declining permafrost.Funding for this work was provided through
NSF-OPP-0229302 and NSF-OPP-0732985. Additional support to S.E.T.
was provided by an NSERC Postdoctoral Fellowship.2013-02-2
Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability
Prochlorococcus contributes significantly to ocean primary productivity. The link
between primary productivity and iron in specific ocean regions is well established
and iron-limitation of Prochlorococcus cell division rates in these regions has been
demonstrated. However, the extent of ecotypic variation in iron metabolism among
Prochlorococcus and the molecular basis for differences is not understood. Here, we
examine the growth and transcriptional response of Prochlorococcus strains, MED4
and MIT9313, to changing iron concentrations. During steady-state, MIT9313
sustains growth at an order-of-magnitude lower iron concentration than MED4. To
explore this difference, we measured the whole-genome transcriptional response of
each strain to abrupt iron starvation and rescue. Only four of the 1159 orthologs of
MED4 and MIT9313 were differentially-expressed in response to iron in both strains.
However, in each strain, the expression of over a hundred additional genes changed,
many of which are in labile genomic regions, suggesting a role for lateral gene
transfer in establishing diversity of iron metabolism among Prochlorococcus.
Furthermore, we found that MED4 lacks three genes near the iron-deficiency induced
gene (idiA) that are present and induced by iron stress in MIT9313. These genes are
interesting targets for studying the adaptation of natural Prochlorococcus assemblages
to local iron conditions as they show more diversity than other genomic regions in
environmental metagenomic databases.Gordon and Betty Moore FoundationNational Science Foundation (U.S.) (Biological Oceanography)United States. Office of Naval Research (ONR Young Investigator Award)National Science Foundation (U.S.) (Chemical Oceanography)National Science Foundation (U.S.) (Environmental Genomics grants
- …