15 research outputs found

    Calcium Release Domains in Mammalian Skeletal Muscle Studied with Two-photon Imaging and Spot Detection Techniques

    Get PDF
    The spatiotemporal characteristics of the Ca2+ release process in mouse skeletal muscle were investigated in enzymatically dissociated fibers from flexor digitorum brevis (FDB) muscles, using a custom-made two-photon microscope with laser scanning imaging (TPLSM) and spot detection capabilities. A two-microelectrode configuration was used to electrically stimulate the muscle fibers, to record action potentials (APs), and to control their myoplasmic composition. We used 125 μM of the low-affinity Ca2+ indicator Oregon green 488 BAPTA-5N (OGB-5N), and 5 or 10 mM of the Ca2+ chelator EGTA (pCa 7) in order to arrest fiber contraction and to constrain changes in the [Ca2+] close to the release sites. Image and spot data showed that the resting distribution of OGB-5N fluorescence was homogeneous along the fiber, except for narrow peaks (∼23% above the bulk fluorescence) centered at the Z-lines, as evidenced by their nonoverlapping localization with respect to di-8-ANEPPS staining of the transverse tubules (T-tubules). Using spot detection, localized Ca2+ transients evoked by AP stimulation were recorded from adjacent longitudinal positions 100 nm apart. The largest and fastest ΔF/F transients were detected at sites flanking the Z-lines and colocalized with T-tubules; the smallest and slowest were detected at the M-line, whereas transients at the Z-line showed intermediate features. Three-dimensional reconstructions demonstrate the creation of two AP-evoked Ca2+ release domains per sarcomere, which flank the Z-line and colocalize with T-tubules. In the presence of 10 mM intracellular EGTA, these domains are formed in ∼1.4 ms and dissipate within ∼4 ms, after the peak of the AP. Their full-width at half-maximum (FWHM), measured at the time that Ca2+ transients peaked at T-tubule locations, was 0.62 μm, similar to the 0.61 μm measured for di-8-ANEPPS profiles. Both these values exceed the limit of resolution of the optical system, but their similarity suggests that at high [EGTA] the Ca2+ domains in adult mammalian muscle fibers are confined to Ca2+ release sites located at the junctional sarcoplasmic reticulum (SR)

    Enhanced glucose-induced intracellular signaling promotes insulin hypersecretion: Pancreatic beta-cell functional adaptations in a model of genetic obesity and prediabetes

    Get PDF
    Obesity is associated with insulin resistance and is known to be a risk factor for type-2 diabetes. In obese individuals, pancreatic beta-cells try to compensate for the increased insulin demand in order to maintain euglycemia. Most studies have reported that this adaptation is due to morphological changes. However, the involvement of beta-cell functional adaptations in this process needs to be clarified. For this purpose, we evaluated different key steps in the glucose-stimulated insulin secretion (GSIS) in intact islets from female ob/ob obese mice and lean controls. Obese mice showed increased body weight, insulin resistance, hyperinsulinemia, glucose intolerance and fed hyperglycemia. Islets from ob/ob mice exhibited increased glucose-induced mitochondrial activity, reflected by enhanced NAD(P)H production and mitochondrial membrane potential hyperpolarization. Perforated patch-clamp examination of beta-cells within intact islets revealed several alterations in the electrical activity such as increased firing frequency and higher sensitivity to low glucose concentrations. A higher intracellular Ca2+ mobilization in response to glucose was also found in ob/ob islets. Additionally, they displayed a change in the oscillatory pattern and Ca2+ signals at low glucose levels. Capacitance experiments in intact islets revealed increased exocytosis in individual ob/ob beta-cells. All these up-regulated processes led to increased GSIS. In contrast, we found a lack of beta-cell Ca2+ signal coupling, which could be a manifestation of early defects that lead to beta-cell malfunction in the progression to diabetes. These findings indicate that beta-cell functional adaptations are an important process in the compensatory response to obesity.This work was supported by grants from the Spanish Ministerio de Ciencia e Innovación (BFU2013-42789-P; BFU2011-28358)This work was supported by grants from the Generalitat Valenciana (PROMETEO/2011/080)This work was supported by grants from the European Foundation for the Study Diabetes (EFSD/BI Basic Programme

    Co-localization of vesicles and P/Q Ca2+-channels explains the preferential distribution of exocytotic active zones in neurites emitted by bovine chromaffin cells

    No full text
    We have taken advantage of the differences between the preferential localization of secretion in the terminals of neurite-emitting bovine chromaffin cells in contrast with the random distribution secretion in spherical cells to study the possible molecular factors determining such localization by using immunofluorescence and confocal microscopy techniques. By analyzing the distribution of dopamine β-hydroxylase present in the membrane of chromaffin granules, we found that vesicles migrate and accumulate in dense packages in the terminals of neurite processes. Neither members of the fusion core complex such as SNAP-25, nor nicotinic receptors are preferentially located in the terminals as would be expected from elements defining sites of release, thereby suggesting the presence of additional factors. Interestingly, we observed a preferential distribution of the P/Q subtype of Ca2+ channels in these neurite terminals and co-localization with vesicles present in these structures, in sharp contrast with the overall distribution of the L subtype channels. Using the same immunofluorescence techniques we were unable to detect N-type calcium channels. In addition, ω-agatoxin IVA was able to block 70% of the exocytotic release occurring into the neurites, whereas L-type blockers had a weak effect. Taken together our results strongly indicate that the co-localization of vesicles and clusters of P/Q Ca2+ channels may explain the precise localization of exocytotic sites in the terminals of neurite-emitting chromaffin cells, whereas the distribution of secretory sites in round cells may arise from the random presence of these factors as indicated by their partial co-localization.This work was supported by grants from the Spanish Direccion General de Investigacion Científica y Tecnica to S. Viniegra (PM98 ± 0101) and Direccion General de Enseñanzas Universitarias e Investigacion de la Generalitat Valenciana to L. M. Gutierrez (GV99 ± 155 ± 1-05). A. Gil and P. Ñeco are recipients of Glaxo Wellcome ± CSIC and Generalitat Valenciana fellowships, respectively.Peer reviewe

    Taipoxin induces F-actin fragmentation and enhances release of catecholamines in bovine chromaffin cells

    No full text
    Adrenomedullary bovine chromaffin cells were used to study the uptake and cellular effects of the phospholipase type A2 (PLA2) neurotoxin taipoxin in a neuroendocrine model. This toxin entered rapidly inside cultured cells. Within 1 h, taipoxin accumulated on the plasma membrane, independently of calcium presence, and caused fragmentation of the F-actin cytoskeleton. Toxin-induced cell death occurred after 24 h of incubation with the appearance of toxin containing large vesicles. Secretory experiments performed in cell populations showed an increased exocytosis in taipoxin-treated cells stimulated by depolarization or by incubation with the calcium-ionophore A23187. Like F-actin fragmentation, this effect is abolished by replacement of Ca2+ with Sr2+ during toxin incubation. The effect of taipoxin on exocytosis is not enhanced by latrunculin A, a F-actin disassembling drug altering secretion. Secretory studies in single taipoxin-treated cells using amperometry, showed an increase in the number of released vesicles without modification of the kinetic parameters of individual vesicle fusions. Taken together, these results suggest that taipoxin causes F-actin fragmentation and enhances secretion by redistribution of vesicles among secretory pools.This work was supported by Grants from the Dirección General de Enseñanzas Universitarias e Investigación de la Generalitat Valenciana (GV99-155-1-05, and GV01-6) and Spanish Dirección General de Investigación Científica y Técnica (PM98-0101, and BMC2002-00845) to LMG, and from Telethon GP0272Y01 and Cofin MM05192773-001 (to CM and OR). PÑ and AG are recipients of Generalitat Valenciana and Glaxo-Wellcome-CSIC fellowships, respectively.Peer reviewe

    New roles of myosin II during vesicle transport and fusion in chromaffin cells

    No full text
    Modified herpes virus (amplicons) were used to express myosin regulatory light chain (RLC) chimeras with green fluorescent protein (GFP) in cultured bovine chromaffin cells to study myosin II implication in secretion. After infection, RLC-GFP constructs were clearly identified in the cytoplasm and accumulated in the cortical region, forming a complex network that co-localized with cortical F-actin. Cells expressing wild type RLC-GFP maintained normal vesicle mobility, whereas cells expressing an unphosphorylatable form (T18A/S19A RLC-GFP) presented severe restrictions in granule movement as measured by individual tracking in dynamic confocal microscopy studies. Interestingly, the overexpression of this mutant form of RLC also affected the initial secretory burst elicited by either high K(+) or BaCl(2), as well as the secretion induced by fast release of calcium from caged compounds in individual cells. Moreover, T18A/S19A RLC-GFP-infected cells presented slower fusion kinetics of individual granules compared with controls as measured by analysis of amperometric spikes. Taken together, our results demonstrate the implication of myosin II in the transport of vesicles, and, surprisingly, in the final phases of exocytosis involving transitions affecting the activity of docked granules, and therefore uncovering a new role for this cytoskeletal element.ThisworkwassupportedinpartbySpanishMinistryofScienceand TechnologyGrantBMC2002-00845andGeneralitatValencianaGrant GRUPOS03/040.Peer reviewe

    Differential participation of actin- and tubulin-based vesicle transport systems during secretion in bovine chromaffin cells

    No full text
    The role of cytoskeletal elements in vesicle transport occurring during exocytosis was examined in adrenal medullary bovine chromaffin cells maintained in culture. Amperometric determination of depolarization-dependent catecholamine release from individual intact cells treated with actin or myosin inhibitors showed alterations in the fast and slow phases of secretion when compared with untreated cells. In contrast, microtubule disassemblers or stabilizers have a moderate effect on secretion, only affecting the release of slow secretory components. In experiments using confocal dynamic microscopy we have observed the drastic effect of actin and myosin inhibitors in abolishing vesicle movement throughout the cytoplasm, and the inhibition of granule mobility in deep perinuclear regions caused by the microtubule stabilizers. Following loss of mobility, vesicles were associated with filaments of F-actin or microtubules. In addition, the mobility of cortical vesicles was affected by actin–myosin inhibitors but not by microtubule inhibitors. The study of cortical cytoskeleton in living cells showed vesicles associated with dense tubular F-actin structures, with microtubules appearing as low density networks. These findings suggest that the distribution and density of both cytoskeletal elements in the cortical region may influence the recruitment of vesicle pools during secretion.This work was supported by grants from the Spanish Dirección General de Investigación Científica y Técnica (BMC2002-00845) and Dirección General de Enseñanzas Universitarias e Investigación de la Generalitat Valenciana (GV01-6). P.Ñ. and D.G. are recipients of a Generalitat Valenciana and Ministerio de Ciencia y Tecnología fellowships, respectively.Peer reviewe

    Glycogen synthase kinase 3 activation is essential for the snake phospholipase A2 neurotoxin-induced secretion in chromaffin cells

    No full text
    Neuroendocrine chromaffin cells were used to study the mechanism of the snake phospholipase A2 (PLA2) neurotoxin enhancement of exocytosis. Notexin, β-bungarotoxin, taipoxin or textilotoxin enhanced the fast release of catecholamines elicited by flash photolysis of cytosolic caged calcium. Such an increase correlates with the capacity of these neurotoxins to cause fragmentation of the F-actin cortical barrier with subsequent accumulation of vesicles in the proximity of the plasma membrane. These PLA2 neurotoxins do not act via protein kinase C activation, which is known to promote F-actin fragmentation. Lithium, RO31-8220 and SB216763, three inhibitors of the glycogen synthase kinase 3, prevent both the alteration of the F-actin peripheral cortex and the enhancement of fast release elicited by these neurotoxins. In addition, glycogen synthase kinase 3 has been detected by immunolocalization in a membranous compartment of the chromaffin cell endoplasmic reticulum (ER). These results suggest that the activation of this enzyme plays a major role in the enhancement of exocytosis of the readily releasable granules caused by PLA2 neurotoxins in neuroendocrine chromaffin cells.This work was supported by grants from the Ministry of Science and Technology (BMC2002-00845) and Ministry of Education and Culture of Spain (BFU2005-02154/BFI), Generalitat Valenciana (GRUPOS 03/040 and ACOMP06/36), Telethon GP0272Y01 and FISR Neurobiotech (to C.M. and O.R.). P.Ñ. and D.G. are recipients of a Generalitat Valenciana and Glaxo-Wellcome-CSIC fellowships, respectively.Peer reviewe

    Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells

    No full text
    Transmitted light images showed an intricate and dynamic cytoplasmic structural network in cultured bovine chromaffin cells observed under high magnification. These structures were sensitive to chemicals altering F-actin-myosin and colocalised with peripheral F-actin, β-actin and myosin II. Interestingly, secretagogues induced a Ca2+-dependent, rapid (>10 second) and transitory (60-second cycle) disassembling of these cortical structures. The simultaneous formation of channel-like structures perpendicular to the plasmalemma conducting vesicles to the cell limits and open spaces devoid of F-actin in the cytoplasm were also observed. Vesicles moved using F-actin pathways and avoided diffusion in open, empty zones. These reorganisations representing F-actin transfer from the cortical barrier to the adjacent cytoplasmic area have been also confirmed by studying fluorescence changes in cells expressing GFP-β-actin. Thus, these data support the function of F-actin-myosin II network acting simultaneously as a barrier and carrier system during secretion, and that transmitted light images could be used as an alternative to fluorescence in the study of cytoskeleton dynamics in neuroendocrine cells.This work was supported by Grants from the Spanish Dirección General de Investigación Científica y Técnica (BMC2002-00845) and Dirección General de Enseñanzas Universitarias e Investigación de la Generalitat Valenciana (GV01-6 and GRPOS03/040). D.G. and P.Ñ. are recipients of a MECYT Grant associated and Generalitat Valenciana fellowships, respectively.Peer reviewe

    Myosin II contributes to fusion pore expansion during exocytosis

    No full text
    During exocytosis, the fusion pore expands to allow release of neurotransmitters and hormones to the extracellular space. To understand the process of synaptic transmission, it is of outstanding importance to know the properties of the fusion pore and how these properties affect the release process. Many proteins have been implicated in vesicle fusion; however, there is little evidence for proteins involved in fusion pore expansion. Myosin II has been shown to participate in the transport of vesicles and, surprisingly, in the final phases of exocytosis, affecting the kinetics of catecholamine release in adrenal chromaffin cells as measured by amperometry. Here, we have studied single vesicle exocytosis in chromaffin cells overexpressing an unphosphorylatable form (T18AS19A RLC-GFP) of myosin II that produces an inactive protein by patch amperometry. This method allows direct determination of fusion pore expansion by measuring its conductance, whereas the release of catecholamines is recorded simultaneously by amperometry. Here we demonstrated that the fusion pore is of critical importance to control the release of catecholamines during single vesicle secretion in chromaffin cells. We proved that myosin II acts as a molecular motor on the fusion pore expansion by hindering its dilation when it lacks the phosphorylation sites. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc.This work was supported by Instituto de Salud Carlos III Grant 05/0675 (to E. A.) and Ministerio de Educacion y Ciencia Grants BFU2006/13647 (to G. A. T.) and BFU U2005/02154 (to L. M. G.).Peer Reviewe
    corecore