13 research outputs found

    Optimized V-shape design of GaN nanodiodes for the generation of Gunn oscillations

    Get PDF
    In this work, recent advances in the design of GaN planar Gunn diodes with asymmetric shape, socalled self-switching diodes, are presented. A particular geometry for the nanodiode is proposed, referred as V-shape, where the width of the channel is intentionally increased as approaching the anode. This design, which reduces the effect of the surface-charges at the anode side, is the most favourable one for the onset of Gunn oscillations, which emerge at lower current levels and with lower threshold voltages as compared to the standard square geometry, thus enhancing the power efficiency of the self-switching diode as sub-millimeter wave emitters

    Searching for THz Gunn oscillations in GaN planar nanodiodes

    Get PDF
    A detailed study of GaN-based planar asymmetric nanodiodes, promising devices for the fabrication of room temperature THz Gunn oscillators, is reported. By using Monte Carlo simulations, an analysis of the static I-V curves and the time-domain evolution of the current obtained when varying some simulation parameters in the diodes has been made. Oscillation frequencies of hundreds of GHz are predicted by the simulations in diodes with micrometric channel lengths. Following simulation guidelines, a first batch of diodes was fabricated. It was found that surface charge depletion effects are stronger than expected and inhibit the onset of the oscillations. Indeed, a simple standard constant surface charge model is not able to reproduce experimental measurements and a self-consistent model must be included in the simulations. Using a self-consistent model, it was found that to achieve oscillations, wider channels and improved geometries are necessary.ROOTHz (FP7-243845

    Experimental demonstration of direct terahertz detection at room-temperature in AlGaN/GaN asymmetric nanochannels

    Get PDF
    The potentialities of AlGaN/GaN nanodevices as THz detectors are analyzed. Nanochannels with broken symmetry (so called Self Switching Diodes) have been fabricated for the first time in this material system using both recess-etching and ion implantation technologies. The responsivities of both types of devices have been measured and explained using Monte Carlo simulations and non linear analysis. Sensitivities up to 100 V/W is obtained at 0.3 THz with a 280 pW/sqrt(Hz) Noise Equivalent Power.ROOTHz (FP7-243845

    Biogas from anaerobic digestion as an energy vector: Current upgrading development

    Get PDF
    Producción CientíficaThe present work reviews the role of biogas as advanced biofuel in the renewable energy system, summarizing the main raw materials used for biogas production and the most common technologies for biogas upgrading and delving into emerging biological methanation processes. In addition, it provides a description of current European legislative framework and the potential biomethane business models as well as the main biogas production issues to be addressed to fully deploy these upgrading technologies. Biomethane could be competitive due to negative or zero waste feedstock prices, and competitive to fossil fuels in the transport sector and power generation if upgrading technologies become cheaper and environmentally sustainable.Unión Europea - (URBIOFIN project 745785, H2020-BBI-JTI-2016)Junta de Castilla y León y Fondo Europeo de Desarrollo Regional (FEDER) - (grant CLU 2017-09

    GaN nanodevices for THz signal generation. Monte Carlo simulation and experimental analysis

    Get PDF
    [EN] OBJECTIVES The overall aim of this PhD Thesis is the numerical analysis (through simulation Monte Carlo, MC) and experimental (fabrication and characterization) of GaN-based nanodevices able to generate signals in the THz band. First, and by means of MC simulations, is to analyze the possibility of very high frequency oscillations by OPTTR in n + nn + diodes of GaN. It will investigate the conditions under which this phenomenon occurs and the influence of multiple parameters in achieving these oscillations, their frequency, amplitude and spectral purity. Second, in the scenario that provides excellent participation in a European project such as ROOTHz be studied intensively GaN SSDs for obtaining THz signals at room temperature by Gunn oscillations. Collaboration with other experimental groups, in this particular case the IEMN of Lille (France), will make it possible in this area, as well as MC simulations us dispose of fabrication and characterization of the devices studied, which should enable us to refine the models and contribute to the optimal design of SSDs to work as THz emitters. METHODOLOGY AND EXPERIMENTAL DESIGN The main tool used for the study that will take place in this thesis is the MC simulation of electronic devices based on a code entirely developed by the Research Group Semiconductor Devices, University of Salamanca. The first task of this work has been the adaptation of such a code in order to approach the study of GaN devices under this project. Although most of the results come from MC simulations, we also note that the result of collaboration with IEMN will present information on the fabrication and characterization of SSDs CONCLUSIONS OPTTR in n + nn + diodes of GaN When the operating temperature T is sufficiently low that the most likely mechanism of scattering in the network is the polar optical phonon emission, the dynamics of the electron transport through the active region of the diode consists of free flight of length l0, accelerated by the electric field, truncated by sudden slowdowns at the time of issuing the phonon. Along its cathode to the anode, electrons emitted phonon a number which depends on the potential applied to accelerate. The characteristic frequency of this phenomenon fE, reverse flight time between the emission of phonons, is proportional to the applied bias. The cyclic process stops and accelerations of all carriers resulting in charge accumulation in the braking zone. This will have an active region having a sequence of alternative accumulations positive and negative charge. The natural frequency of oscillation of such a charge density is the plasma frequency fp. If the frequency is close to fp fE, plasma oscillations are powered by quasi-synchronous input from electron charge buildup, and this gives rise to oscillations of high frequency current, next to, through the device . For this to occur, it is also necessary that the spacing between the charge accumulations, l0, is much greater than the Debye length. Gunn oscillations in GaN-based SSDs As other III-V materials, the GaN has, from a field threshold around 200 kV / cm, an area of negative incremental mobility. Their origin is the transfer of electrons from the valley to valley U 1, which gives them a greater effective mass and, therefore, slows them down, may form charge accumulations that propagate through the material to the saturation velocity. Known as Gunn effect, this phenomenon can be exploited to obtain oscillations in the current. The fact that the present GaN high values on the one hand, the threshold field and the breakdown field and, secondly, the saturation velocity, makes it a promising element of power devices and high frequency that exploit Gunn effect. The simple geometry of the diodes SSD, transport devices where ditches insulating planar L-shaped break channel asymmetry is favorable for the emission of signals by effect Gunn THz at room temperature. Increased noise at low frequency as an indicator of the oscillations Since experimental techniques at frequencies of hundreds of GHz are still remarkably complicated, there is the need for alternative methods for detecting the presence of oscillations in the THz range or sub-THz MC predicting simulations. The kinks associated with the onset of instabilities, which in some cases are detected in the oscillator device IV curves indicating the transition from a passive state to a state of generation, in the diodes studied in this work are unclear (in n diodes + nn + for OPTTR) or even absent (in SSDs). However, MC simulation results for the spectral density of the noise in a low frequency current IS (0) show that it presents a very marked increase in the potential applied when approaching the threshold for the appearance of the oscillations[ES] OBJETIVOS El objetivo general de este trabajo de Tesis Doctoral es el análisis numérico (mediante simulación Monte Carlo, MC) y experimental (fabricación y caracterización) de nanodispositivos basados en GaN capaces de generar señales en la banda de THz. En primer lugar, y por medio de simulaciones MC, se pretende analizar la posibilidad de obtener oscilaciones de muy alta frecuencia mediante la OPTTR en diodos n+nn+ de GaN. Se investigarán las condiciones en que tiene lugar este fenómeno así como la influencia de múltiples parámetros en la consecución de tales oscilaciones, su frecuencia, amplitud y pureza espectral. En segundo lugar, en el inmejorable escenario que brinda la participación en un proyecto europeo como es el ROOTHz, se estudiarán de forma intensiva los SSDs de GaN para la obtención de señales de THz a temperatura ambiente mediante oscilaciones Gunn. La colaboración con otros grupos experimentales, en este caso en particular el IEMN de Lille (Francia), hará posible que en este ámbito, además de simulaciones MC, dispongamos de fabricación y caracterización de los dispositivos estudiados, lo cual ha de permitirnos refinar los modelos y contribuir al diseño óptimo de los SSDs para trabajar como emisores de THz. METODOLOGÍA Y DISEÑO EXPERIMENTAL La principal herramienta empleada para el estudio que realizaremos en esta Tesis Doctoral es la simulación MC de dispositivos electrónicos, basada en un código íntegramente desarrollado por el Grupo de Investigación en Dispositivos Semiconductores de la Universidad de Salamanca. La primera tarea de este trabajo ha sido la adaptación de tal código para poder abordar el estudio de los dispositivos de GaN objeto de este proyecto. Pese a que el grueso de los resultados procederá de simulaciones MC, también hemos de señalar que fruto de la colaboración con el IEMN se presentará información relativa a la fabricación y caracterización de los SSDs CONCLUSIONES OPTTR en diodos n+nn+ de GaN Cuando la temperatura de operación T es suficientemente baja para que el mecanismo más probable de scattering con la red sea la emisión de fonones ópticos polares, la dinámica de los electrones en su transporte a través de la zona activa del diodo consta de vuelos libres, de longitud l0 , acelerados por el campo eléctrico, truncados por súbitas ralentizaciones en el momento de emitir el fonón. En su recorrido de cátodo a ánodo, los electrones emitirán un cierto número de fonones que dependerá del potencial aplicado para acelerarlos. La frecuencia característica de este fenómeno fE, inverso del tiempo de vuelo entre las emisiones de fonones, es proporcional a la polarización aplicada. El proceso cíclico de aceleraciones y paradas del conjunto de portadores da lugar a acumulaciones de carga en las zonas de frenado. De esta forma se tiene una región activa que presenta una sucesión de acumulaciones alternativas de carga positiva y negativa. La frecuencia natural de oscilación de tal densidad de carga es la frecuencia de plasma fp. Si la frecuencia fE es próxima a fp, las oscilaciones de plasma son potenciadas por el aporte cuasi-síncrono de electrones procedentes de las acumulaciones de carga, y ello da lugar a oscilaciones de corriente de muy alta frecuencia, próximas a , a través del dispositivo. Para que esto ocurra, es necesario además que el espaciado entre las acumulaciones de carga, l0 , sea mucho mayor que la longitud de Debye. Oscilaciones Gunn en SSDs basados en GaN Como otros materiales III-V, el GaN presenta, a partir de un campo umbral en torno a 200 kV/cm, una zona de movilidad incremental negativa. Su origen es la transferencia de electrones desde el valle 1 al valle U, el cual les confiere una mayor masa efectiva y, por tanto, los ralentiza, pudiendo formar acumulaciones de carga que se propagan por el material a la velocidad de saturación. Conocido como efecto Gunn, este fenómeno puede ser aprovechado para obtener oscilaciones en la corriente. El hecho de que el GaN presente valores muy elevados, por un lado, del campo umbral y del campo de ruptura y, por otro, de la velocidad de saturación, le convierte en un prometedor elemento constitutivo de dispositivos de potencia y alta frecuencia que exploten el efecto Gunn. La sencilla geometría de los diodos SSD, dispositivos de transporte planar donde unas zanjas aislantes en forma de L rompen la asimetría del canal, es favorable para la emisión de señales de THz por efecto Gunn a temperatura ambiente. Aumento del ruido a baja frecuencia como indicador de las oscilaciones Dado que las técnicas experimentales a frecuencias de centenas de GHz aún resultan notablemente complicadas, se plantea la necesidad de disponer de procedimientos alternativos para detectar la presencia de las oscilaciones en el rango de THz o sub-THz que predicen las simulaciones MC. Los kinks asociados a la aparición de inestabilidades, que en algunas ocasiones se detectan en las curvas I-V de dispositivos osciladores indicando la transición de un estado pasivo a un estado de generación, en los diodos estudiados en este trabajo son poco claros (en los diodos n+nn+ para la OPTTR) o incluso inexistentes (en los SSDs). Sin embargo, los resultados de las simulaciones MC para la densidad espectral del ruido en corriente a baja frecuencia SI (0) evidencian que ésta presenta un aumento muy notable cuando el potencial aplicado se aproxima al umbral para la aparición de las oscilacione
    corecore