13 research outputs found

    Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems

    Get PDF
    Abstract Re-evaluation of the temperature-dependent uncertainty parameter f(T) of elementary reactions is proposed by considering all available direct measurements and theoretical calculations. A procedure is presented for making f(T) consistent with the form of the recommended Arrhenius expression. The corresponding uncertainty domain of the transformed Arrhenius parameters (ln A, n, E/R) is convex and centrally symmetric around the mean parameter set. The f(T) function can be stored efficiently using the covariance matrix of the transformed Arrhenius parameters. The calculation of the uncertainty of a backward rate coefficient from the uncertainty of the forward rate coefficient and thermodynamic data is discussed. For many rate coefficients, a large number of experimental and theoretical determinations are available, and a normal distribution can be assumed for the uncertainty of ln k. If little information is available for the rate coefficient, equal probability of the transformed Arrhenius parameters within their domain of uncertainty (i.e. uniform distribution) can be assumed. Algorithms are provided for sampling the transformed Arrhenius parameters with either normal or uniform distributions. A suite of computer codes is presented that allows the straightforward application of these methods. For 22 important elementary reactions of the H2 and syngas (wet CO) combustion systems, the Arrhenius parameters and 3rd body collision efficiencies were collected from experimental, theoretical and review publications. For each elementary reaction, kmin and kmax limits were determined at several temperatures within a defined range of temperature. These rate coefficient limits were used to obtain a consistent uncertainty function f(T) and to calculate the covariance matrix of the transformed Arrhenius parameters

    Conservation biology research priorities for 2050: A Central-Eastern European perspective

    Get PDF
    One of the main goals of the EU Biodiversity Strategy for 2030 is to avoid further loss of biodiversity and to restore ecosystems. These efforts can be facilitated by compiling the main research topics related to conservation biology to provide new evidence for the most urgent knowledge gaps, and publicise it to researchers, research funders and policy makers. We used the possible future statements from the Hungarian Environmental Foresight Report for 2050 which identified region-specific problems. To highlight likely future environmental and conservation questions, in this study we asked researchers from the fields of ecology and conservation to define research questions addressing these future statements in line with international research trends and challenges. The study resulted in fourteen priority research topics, split into seven clusters relevant to biological conservation that should be targeted by stakeholders, primarily policy makers and funders to focus research capacity to these topics. The main overarching themes identified here include a wide range of approaches and solutions such as innovative technologies, involvement of local stakeholders and citizen scientists, legislation, and issues related to human health. These indicate that solutions to conservation challenges require a multidisciplinary approach in design and a multi-actor approach in implementation. Although the identified research priorities were listed for Hungary, they are in line with European and global biodiversity strategies, and can be tailored to suit other Central and Eastern European countries as well. We believe that our prioritisation can help science–policy discussion, and will eventually contribute to healthy and well-functioning ecosystems
    corecore