138 research outputs found

    Zero Krengel Entropy does not kill Poisson Entropy

    Get PDF
    We prove that the notions of Krengel entropy and Poisson entropy for infinite-measure-preserving transformations do not always coincide: We construct a conservative infinite-measure-preserving transformation with zero Krengel entropy (the induced transformation on a set of measure 1 is the Von Neumann-Kakutani odometer), but whose associated Poisson suspension has positive entropy

    Averaging along Uniform Random Integers

    Full text link
    Motivated by giving a meaning to "The probability that a random integer has initial digit d", we define a URI-set as a random set E of natural integers such that each n>0 belongs to E with probability 1/n, independently of other integers. This enables us to introduce two notions of densities on natural numbers: The URI-density, obtained by averaging along the elements of E, and the local URI-density, which we get by considering the k-th element of E and letting k go to infinity. We prove that the elements of E satisfy Benford's law, both in the sense of URI-density and in the sense of local URI-density. Moreover, if b_1 and b_2 are two multiplicatively independent integers, then the mantissae of a natural number in base b_1 and in base b_2 are independent. Connections of URI-density and local URI-density with other well-known notions of densities are established: Both are stronger than the natural density, and URI-density is equivalent to log-density. We also give a stochastic interpretation, in terms of URI-set, of the H_\infty-density

    Invariant measures for Cartesian powers of Chacon infinite transformation

    Full text link
    We describe all boundedly finite measures which are invariant by Cartesian powers of an infinite measure preserving version of Chacon transformation. All such ergodic measures are products of so-called diagonal measures, which are measures generalizing in some way the measures supported on a graph. Unlike what happens in the finite-measure case, this class of diagonal measures is not reduced to measures supported on a graph arising from powers of the transformation: it also contains some weird invariant measures, whose marginals are singular with respect to the measure invariant by the transformation. We derive from these results that the infinite Chacon transformation has trivial centralizer, and has no nontrivial factor. At the end of the paper, we prove a result of independent interest, providing sufficient conditions for an infinite measure preserving dynamical system defined on a Cartesian product to decompose into a direct product of two dynamical systems

    Self-Similar Corrections to the Ergodic Theorem for the Pascal-Adic Transformation

    Full text link
    Let T be the Pascal-adic transformation. For any measurable function g, we consider the corrections to the ergodic theorem sum_{k=0}^{j-1} g(T^k x) - j/l sum_{k=0}^{l-1} g(T^k x). When seen as graphs of functions defined on {0,...,l-1}, we show for a suitable class of functions g that these quantities, once properly renormalized, converge to (part of) the graph of a self-affine function. The latter only depends on the ergodic component of x, and is a deformation of the so-called Blancmange function. We also briefly describe the links with a series of works on Conway recursive 10,000sequence.Comment:versiontoappearinStochasticsandDynamics.WeaddedadiscussiononthelinkswithConway10,00010,000 sequence.Comment: version to appear in Stochastics and Dynamics. We added a discussion on the links with Conway 10,000 recursive sequenc

    Around King's Rank-One theorems: Flows and Z^n-actions

    Full text link
    We study the generalizations of Jonathan King's rank-one theorems (Weak-Closure Theorem and rigidity of factors) to the case of rank-one R-actions (flows) and rank-one Z^n-actions. We prove that these results remain valid in the case of rank-one flows. In the case of rank-one Z^n actions, where counterexamples have already been given, we prove partial Weak-Closure Theorem and partial rigidity of factors

    Growth rate for the expected value of a generalized random Fibonacci sequence

    Get PDF
    A random Fibonacci sequence is defined by the relation g_n = | g_{n-1} +/- g_{n-2} |, where the +/- sign is chosen by tossing a balanced coin for each n. We generalize these sequences to the case when the coin is unbalanced (denoting by p the probability of a +), and the recurrence relation is of the form g_n = |\lambda g_{n-1} +/- g_{n-2} |. When \lambda >=2 and 0 < p <= 1, we prove that the expected value of g_n grows exponentially fast. When \lambda = \lambda_k = 2 cos(\pi/k) for some fixed integer k>2, we show that the expected value of g_n grows exponentially fast for p>(2-\lambda_k)/4 and give an algebraic expression for the growth rate. The involved methods extend (and correct) those introduced in a previous paper by the second author

    Poisson suspensions and entropy for infinite transformations

    Full text link
    The Poisson entropy of an infinite-measure-preserving transformation is defined as the Kolmogorov entropy of its Poisson suspension. In this article, we relate Poisson entropy with other definitions of entropy for infinite transformations: For quasi-finite transformations we prove that Poisson entropy coincides with Krengel's and Parry's entropy. In particular, this implies that for null-recurrent Markov chains, the usual formula for the entropy qipi,jlogpi,j-\sum q_i p_{i,j}\log p_{i,j} holds in any of the definitions for entropy. Poisson entropy dominates Parry's entropy in any conservative transformation. We also prove that relative entropy (in the sense of Danilenko and Rudolph) coincides with the relative Poisson entropy. Thus, for any factor of a conservative transformation, difference of the Krengel's entropy is equal to the difference of the Poisson entropies. In case there exists a factor with zero Poisson entropy, we prove the existence of a maximum (Pinsker) factor with zero Poisson entropy. Together with the preceding results, this answers affirmatively the question raised in arXiv:0705.2148v3 about existence of a Pinsker factor in the sense of Krengel for quasi-finite transformations.Comment: 25 pages, a final section with some more results and questions adde

    Pinning by a sparse potential

    Get PDF
    We consider a directed polymer interacting with a diluted pinning potential restricted to a line. We characterize explicitely the set of disorder configurations that give rise to localization of the polymer. We study both relevant cases of dimension 1+1 and 1+2. We also discuss the case of massless effective interface models in dimension 2+1.Comment: to appear in Stochastic Processes and their Application
    corecore