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Abstract

We consider a directed polymer interacting with a diluted pinning potential restricted to a

line. We characterize explicitly the set of disorder configurations that give rise to localization

of the polymer. We study both relevant cases of dimension 1þ 1 and 1þ 2. We also discuss

the case of massless effective interface models in dimension 2þ 1.
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It is customary, when modelling a disordered physical system, to assume that the
disorder is sampled from some suitable random distribution. Of course there is a
high degree of arbitrariness in the choice of this distribution, and one hopes that only
qualitative features are relevant. Then, in the best possible cases, one can prove
results that hold for almost every disorder configuration. However, there are several
drawbacks with such an approach: First, it would be desirable to avoid these
additional assumptions on the distribution of the disorder, and second, even with an
almost sure result, we are left clueless about the validity of the desired property when
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an explicit disorder configuration is given. Therefore, it would be very valuable if one
could instead characterize the set of realizations of the environment for which a
specific property holds, or at least give some sufficient conditions. This is a much
more ambitious program, and it is probably doomed to fail in general. In this paper,
we give a simple example of a problem where such an approach can actually be
pursued.

An important physical problem, which has received much attention recently from
the mathematical community, is that of a directed polymer in a random environment,
see, e.g., [4] and references therein. The latter is modelled by an exponential
perturbation of the path measure of a d-dimensional random walk (or Brownian
motion), depending on the realization of a random environment. The perturbation is
such that visits of the random walk to regions where the environment takes positive
values are rewarded, while visits to regions of opposite sign are penalized. Among the
many questions of interest, there is the problem of studying the superdiffusive
behaviour of the path in dimension 1þ 11. Heuristically, one expects that there will be
an ‘‘optimal tube’’ in the environment, inside which the landscape looks particularly
good from the random walk point of view, and along which the random walk will
localize. It is natural to split this problem into two: (1) establish the existence of such
an ‘‘optimal tube’’, whatever that really means, and (2) prove that given such an
‘‘optimal tube’’, there is pinning of the polymer along the tube. Once we accept that
such a splitting is natural, one can start to build simpler models for both points
separately, in order to gain a better understanding of these issues. For the second part,
a natural simplification is as follows: Consider a path Y : N ! Zd , and perturb the
path measure of a random walk X by rewarding each intersection between the paths X

and Y . The question is then to understand under which conditions on the path Y there
will be pinning of the polymer X , i.e., there will be a positive density of such
intersections. This might then shed some light on the properties of this ‘‘optimal tube’’
one should look for when analysing the random environment. The only result we are
aware of in this direction is due to Ioffe and Louidor [6], who consider the situation
where Y is itself a random walk (its increments having possibly a different law from
those of X ), and proved that pinning occurs in dimension 1þ 1 for almost all
realizations of Y . This is however ‘‘only’’ an almost sure result, and as such it does not
tell what is the set of measure 0 (w.r.t. the law of the random walk Y ) of paths which
do not lead to pinning, which is most unfortunate since the ‘‘optimal tube’’ is expected
to behave quite differently from a random walk trajectory. It would thus be very
interesting to get an explicit characterization of the pathsY for which pinning occurs,
or at least sufficient conditions.

We hope to come back to this issue in the future. In the present work, we analyse a
much simpler situation. Namely, here the pinning potential is restricted to a single
line, and the disorder comes from the fact that this potential is diluted. More
precisely, let o 2 f0; 1gN, Z40, and let P0 denote the law of an aperiodic, symmetric
random walk on Zd2 starting from 0, with increments of finite variance. Our main
1We use the terminology ‘‘dimension d1 þ d2’’ when considering a d1-dimensional (directed) object in a

ðd1 þ d2Þ-dimensional space.
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É. Janvresse et al. / Stochastic Processes and their Applications 115 (2005) 1323–1331 1325
interest is in the following perturbation of P0:

Po
N ;ZðX Þ ¼

def
ðZo

N ;ZÞ
	1 exp Z

X
i2LN

1ðX i¼0Þoi

 !
P0ðX Þ, (1)

where LN ¼
def
f1; . . . ;Ng and Zo

N ;Z is the partition function used to normalize Po
N ;Z to a

probability measure. This measure models the interaction of a directed polymer in
1þ d2 dimensions, interacting with an attractive diluted potential restricted to the
line x2 ¼ 
 
 
 ¼ xd2þ1 ¼ 0. The central question is under which conditions does such a
potential localize the polymer, i.e., when is it true that

lim inf
N!1

1

N
EoN;Z

XN

i¼1

1 X i¼0ð Þ

 !
40 ?

When this happens, we say that there is pinning of the polymer by the potential. It
has been known for a long-time that in the special case o � 1, the polymer is pinned
for any value of Z40 when d2 ¼ 1 or 2, but is not pinned for small enough values of
Z in higher dimensions (see e.g. [3] for a special case, and [2] for a more general
treatment). The general case of a discrete-time Markov chain interacting with a
(possibly random) potential restricted to a line was recently investigated by
Alexander and Sidoravicius [1]. In particular, they compared the effect of an i.i.d.
random potential with the constant potential given by its average. One of their main
results is that pinning of the polymer is strictly enhanced by the presence of such
disorder. The situation we consider is a simple particular case of their setting, but our
result is stronger since we work with a fixed (arbitrary) environment.

Of course, diluting the potential only makes it less likely for the polymer to be
pinned, so there is still delocalization at small values of Z in dimensions 3 and higher,
for arbitrary o. In this work, we therefore restrict our attention to dimensions 1 and 2.
Rather remarkably, in this case it is possible to obtain a very simple characterization
of the set of environments for which pinning occurs, see Theorem 1 below and its
corollary. Before stating the result, we also introduce another case where the same
question can be investigated: 2þ 1-dimensional massless effective interface models. In
this case, let L!Z2, let V : R ! R such that 0oc	pV 00pcþo1, and let ZX0. We
are interested in the measure (on RL) defined by2

Po
L;ZðdX Þ ¼

def
ðZo

L;ZÞ
	1 exp 	

1

2

X
ji	jj¼1

i;j2L

V ðX i 	 X jÞ þ
X
ji	jj¼1

i2L;jeL

V ðX iÞ

0
B@

1
CA

�
Y
i2L

ðdX i þ Zoid0ðdX iÞÞ, ð2Þ

where d0 is the Dirac mass at 0 and o 2 f0; 1gN
2

. In the special case
L ¼ LN ¼

def
f1; . . . ;Ng2, we simply write Po

N ;Z and Zo
N ;Z. This models a two-dimensional
2In this paper, we only consider the so-called d-pinning. However, given the very rough nature of the

bounds we are after, there is no difficulty in treating more general potentials.
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Fig. 1. A simulation of the 1+1-dimensional process. The environment has density 0.8 on the first and last

third of the interval, and 0 inbetween.
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interface in a three-dimensional medium, interacting with an attractive (diluted)
potential located in the plane x3 ¼ 0. The basic question is the same as above:
Determine under which conditions the interface is localized by the potential. The case
o � 1 has been studied in details recently, see [2] and reference therein. It turns out
that in this case too, an explicit description of the set of disorder configurations leading
to pinning can be obtained.

The following theorem and its corollary are valid for all three cases of dimensions
1þ 1, 1þ 2 and 2þ 1 (Fig. 1).

Theorem 1. Let 0odo1 and Z40. For all N4N0ðd; ZÞ, and for all o such thatX
i2LN

oi4djLN j, (3)

we have for some C ¼ Cðd; ZÞ40

EoZ;N

X
i2LN

1ðX i¼0Þoi

" #
4CjLN j. (4)

Corollary 2. For any Z40,

lim inf
N!1

jLN j
	1EoZ;N

XN

i2LN

1ðX i¼0Þoi

" #
40, (5)

if and only if

lim inf
N!1

jLN j
	1
X
i2LN

oi40. (6)

Note that this is a sensible definition of pinning, since if pinning does not hold in
this sense, then there exists a sequence of increasing boxes, such that along this
sequence the density of pinned sites goes to zero. Of course, along other sequences
there can be a strictly positive density of pinned sites (examples are easily
constructed).

Proof of Theorem 1. Step 1. It is enough to prove that Zo
N ;Z=Zo

N ;04DjLN j, for some
D ¼ Dðd; ZÞ41. Indeed,

log
Zo

N ;Z

Zo
N ;0

¼

Z Z

0

Eo~Z;N

X
i2LN

1ðX i¼0Þoi

" #
d~Z (7)
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and, since the expectation is increasing in ~Z, we obtain

EoZ;N

X
i2LN

1ðX i¼0Þoi

" #
4

jLN j log D

Z
.

Of course, in the cases of dimensions 1þ 1 and 1þ 2, Zo
N;0 ¼ 1.

Step 2. We first treat the cases of polymers, that is dimensions 1þ d2, d2 ¼ 1 or 2.
Let

ON ¼
def
fi 2 LN ; oi ¼ 1g.

Writing

exp Z
X
i2LN

1ðX i¼0Þoi

 !
¼
Y
i2LN

ððeZ 	 1Þ1ðX i¼0Þ1i2ON
þ 1Þ

and expanding the product, we get

Zo
N;Z ¼ E0 exp Z

X
i2LN

1ðX i¼0Þoi

 !" #

¼
X

A�ON

ðeZ 	 1ÞjAj P0ðX i � 0 on AÞ. ð8Þ

Step 2.1. It is convenient to number the sites of ON , ON ¼ ft1o 
 
 
otjON jg.
Restricting the sum to the subsets A of fixed cardinality r (to be chosen later), and
using the Markov property for the random walk, we obtain the following lower
bound for the partition function (where t0 ¼ ‘0 ¼

def
0):

Zo
N;ZXðeZ 	 1Þr

X
0ol1o


olrpjON j

Yr

i¼1

P0ðX t‘i
	t‘i	1

¼ 0Þ, (9)

which yields, by the local CLT, for some c40,

Zo
N;ZXðeZ 	 1Þr

X
0ol1o


olrpjON j

Yr

i¼1

c

ðt‘i
	 t‘i	1

Þ
d2=2

. (10)

Step 2.2. We begin by considering the simpler case of dimension 1þ 1. Observe
that, by Jensen inequality, we have

Yr

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t‘i

	 t‘i	1

p ¼ exp 	
r

2

Xr

i¼1

1

r
logðt‘i

	 t‘i	1
Þ

 !
X exp 	

r

2
log

N

r

� �
. (11)

Setting r ¼ jON j=K for some integer K to be chosen later, and observing that the
number of terms in the RHS of (10) is at least Kr, we obtain

Zo
N;ZX KcðeZ 	 1Þ

ffiffiffiffiffi
r

N

r� �r

.

Using jON jXdN, and choosing K large enough, the conclusion follows.
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Step 2.3. We now turn to the more delicate case of dimension 1þ 2. Although the
above argument involving Jensen inequality is too rough to conclude now, it suggests
that the worst possible environment o with a fixed density d occurs when
ti 	 ti	1 � d	1.

We introduce Di ¼
def

ti 	 ti	1 and

CðD1; . . . ;DjON jÞ ¼
def

X
0o‘1o


o‘rpjON j

Yr

i¼1

1

ðt‘i
	 t‘i	1

Þ

¼
X

0o‘1o


o‘rpjON j

1

ðD1 þ 
 
 
 þ D‘1 Þ 
 
 
 ðD‘r	1þ1 þ 
 
 
 þ D‘r
Þ
.

Instead of working directly with the function C, it is convenient to consider a
periodized version defined by (see Fig. 2)

Cperð ~D1;D2; . . . ;DjON jÞ ¼
def

X
0o‘1o


o‘rpjON j

1

ðD‘rþ1 þ 
 
 
 þ DjON j þ ~D1 þ D2 þ 
 
 
 þ D‘1Þ

�
Yr

i¼2

1

ðD‘i	1þ1 þ 
 
 
 þ D‘i
Þ
,

where ~D1 ¼
def

N þ 1	
PjON j

i¼2 Di. We are going to determine the (unique) minimum of
the function Cper, seen as a function on RjON j

þ , restricted to the manifold
~D1 þ

PjON j

i¼2 Di ¼ N þ 1.
Note first that Cper is a convex function. Indeed, the function

ðx1; . . . ;xkÞ7!ðx1 
 
 
xkÞ
	1 is convex on Rk

þ, the composition of a convex function
with an affine function is convex, and the sum of convex functions is also convex, as
well as its restriction to an affine subspace.

We claim that the point Di � D ¼
def
ðN þ 1Þ=jON j is a (strict) local minimum of Cper,

and therefore its unique minimum. To prove this, it is enough, by symmetry, to show that

CperðD;D;D; . . . ;DÞ 	CperðDþ h;D	 h;D; . . . ;DÞp0, (12)
Fig. 2. The construction of Cper: Here jON j ¼ 6, r ¼ 3, ‘1 ¼ 2, ‘2 ¼ 3; ‘3 ¼ ‘r ¼ 5.
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for all h small enough. Indeed, each allowed configuration ð ~D1;D2; . . . ;DjON jÞ can be
written as ðDþ h1;Dþ h2 	 h1; . . . ;Dþ hjON j	1 	 hjON j	2;D	 hjON j	1Þ, and Eq. (12)
together with invariance ofCper under cyclic permutation of the variables, ensure that all
partial derivatives with respect to the hi’s are nonnegative.

Observing that Cper is also invariant under the transformation

ð ~D1;D2; . . . ;DjON jÞ7!ðDjON j; . . . ;D2; ~D1Þ,

we have that

CperðDþ h;D	 h;D; . . . ;DÞ ¼ CperðD	 h;Dþ h;D; . . . ;DÞ.

Therefore, the claim follows by convexity.
We need to compare C and Cper. Noticing that D‘rþ1 þ 
 
 
 þ DjON j þ

~D1XD1, we
immediately get that

CðD1; . . . ;DjON jÞXCperð ~D1;D2; . . . ;DjON jÞXCperðD; . . . ;DÞ.

Therefore Zo
N;ZXðcðeZ 	 1ÞÞr CperðD; . . . ;DÞ. It only remains to find a bound on

CperðD; . . . ;DÞ. Let K40; this number will be chosen later. We have that, for all N

large enough,

CperðD; . . . ;DÞX
1

N

X
0o‘1o‘2o


o‘r

j‘i	‘i	1 jpK

Yr

i¼2

1

ð‘i 	 ‘i	1ÞD

¼
1

Dr	1N

X
0o‘1o‘2o


o‘r	1

j‘i	‘i	1 jpK

Yr	1

i¼2

1

‘i 	 ‘i	1

XK

k¼1

1

k

X
1

Dr	1N
log K

X
0o‘1o‘2o


o‘r	1

j‘i	‘i	1 jpK

Yr	1

i¼2

1

‘i 	 ‘i	1

X
ðlog KÞ

r	1

Dr	1N
.

Choosing now K large enough (which is possible as soon as N4N0ðd; ZÞ), we
conclude the proof of the theorem in this case.

Step 3. We finally consider the case of dimension 2þ 1. Let ON ¼
def
fi 2 LN ;oi ¼ 1g.

Expanding the product in (2), we obtain a representation similar to (8),

Zo
N;Z

Zo
N;0

¼
X

A�ON

ZjAj
Zo

LNnA;0

Zo
N;0

. (13)

Let us partition LN into cells of sidelength K (to be chosen later). We suppose, to
ease notations, that this partitioning can be done exactly; the general case is treated
in a straightforward way (Fig. 3).

Let 0orod=ð2	 dÞ, and let us say that a cell is good if it contains at
least rK2 sites of ON . Clearly, there is at least a density r=ð1þ rÞ of good cells,



R1

R2

Rg

t2,0

t1,0

tg,0

N

K

Fig. 3. The partition of LN : Good cells are shaded, good rows are labelled R1; . . . ;Rg. We also indicate

the extra boundary points t1;0; . . . ; tg;0.
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since otherwise

X
i2LN

oip 1	
r

1þ r

� �
jLN j

K2
rK2 þ

r
1þ r

jLN j

K2
K2 ¼

2r
1þ r

jLN jodjLN j.

Now, let us say that a row of cells is good if the number of good cells in this row is at
least zN=K, where z is some small enough constant. A similar computation shows
that for the class of environments we consider, there must be at least a fraction
z=ð1þ zÞ of good rows.

Returning to (13), we see that we must find a reasonable lower bound on the ratio
of partition functions in the RHS, for a large enough class of sets A. Let us denote by
A the class of sets A containing exactly one site in each good cell located in a good
row. The good rows can be numbered R1; . . . ;Rg, with gX z=ð1þ zÞ

� �
N=K . Ak, the

set of sites of A 2 A belonging to the row Rk, can then also be ordered according to
their first coordinate, Ak ¼ ftk;1; . . . ; tk;nk

g, where nkXzN=K . For each k, let also tk;0

be a site of Z2nLN neighbour of the leftmost cell of Rk. We need the following result
from [5] : For any B!Z2 and t 2 B,

Zo
Bnftg;0

Zo
B;0

X
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logð1þ dðt;BcÞÞ
p .
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From this, we obtain, setting Ak;i ¼ Anft‘;j : ‘ok; or ‘ ¼ k and jpig, that

Zo
LNnA;0

Zo
N ;0

¼
Yg

k¼1

Ynk

i¼1

Zo
LNnAk;i	1;0

Zo
LNnAk;i ;0

X

Yg

k¼1

Ynk

i¼1

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log jtk;i 	 tk;i	1j

p .

We can now conclude exactly as in Step 2.2. Indeed, the innermost product is of the
same type as in (11), except that we have an additional log which only helps us. &

Proof of Corollary 2. The if part follows immediately from Theorem 1. Let us prove
the reciprocal.

By assumption, there exist an increasing sequence Nk and a sequence �k, such that
limk �k ¼ 0, and the density ð1=jLNk

jÞ
P

i2LNk
oio�k. This clearly implies that for all

Z40

Zo
Nk ;Zp exp Z�kjLNk

j
� �

.

Now suppose, by contradiction, that for some Z40

lim inf
k!1

jLNk
j	1EoZ;Nk

X
i2LNk

1ðX i¼0Þoi

2
4

3
5Xc40.

By monotonicity the same inequality holds for all ~Z4Z. By (7), this yields

2Z�kXjLNk
j	1 logZo

Nk ;2Z ¼

Z 2Z

0

jLNk
j	1Eo~Z;Nk

X
i2LNk

1ðX i¼0Þoi

2
4

3
5d~ZXcZ.

This is of course impossible. &
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