49 research outputs found

    High levels of T lymphocyte activation in Leishmania-HIV-1 co-infected individuals despite low HIV viral load

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Concomitant infections may influence HIV progression by causing chronic activation leading to decline in T-cell function. In the Americas, visceral (AVL) and tegumentary leishmaniasis (ATL) have emerged as important opportunistic infections in HIV-AIDS patients and both of those diseases have been implicated as potentially important co-factors in disease progression. We investigated whether leishmaniasis increases lymphocyte activation in HIV-1 co-infected patients. This might contribute to impaired cellular immune function.</p> <p>Methods</p> <p>To address this issue we analyzed CD4<sup>+ </sup>T absolute counts and the proportion of CD8<sup>+ </sup>T cells expressing CD38 in <it>Leishmania</it>/HIV co-infected patients that recovered after anti-leishmanial therapy.</p> <p>Results</p> <p>We found that, despite clinical remission of leishmaniasis, AVL co-infected patients presented a more severe immunossupression as suggested by CD4<sup>+ </sup>T cell counts under 200 cells/mm<sup>3</sup>, differing from ATL/HIV-AIDS cases that tends to show higher lymphocytes levels (over 350 cells/mm<sup>3</sup>). Furthermore, five out of nine, AVL/HIV-AIDS presented low CD4<sup>+ </sup>T cell counts in spite of low or undetectable viral load. Expression of CD38 on CD8<sup>+ </sup>T lymphocytes was significantly higher in AVL or ATL/HIV-AIDS cases compared to HIV/AIDS patients without leishmaniasis or healthy subjects.</p> <p>Conclusions</p> <p><it>Leishmania </it>infection can increase the degree of immune system activation in individuals concomitantly infected with HIV. In addition, AVL/HIV-AIDS patients can present low CD4<sup>+ </sup>T cell counts and higher proportion of activated T lymphocytes even when HIV viral load is suppressed under HAART. This fact can cause a misinterpretation of these laboratorial markers in co-infected patients.</p

    Can volatile organic metabolites be used to simultaneously assess microbial and mite contamination level in cereal grains and coffee beans?

    Get PDF
    A novel approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-ToFMS) was developed for the simultaneous screening of microbial and mite contamination level in cereals and coffee beans. The proposed approach emerges as a powerful tool for the rapid assessment of the microbial contamination level (ca. 70 min versus ca. 72 to 120 h for bacteria and fungi, respectively, using conventional plate counts), and mite contamination (ca. 70 min versus ca. 24 h). A full-factorial design was performed for optimization of the SPME experimental parameters. The methodology was applied to three types of rice (rough, brown, and white rice), oat, wheat, and green and roasted coffee beans. Simultaneously, microbiological analysis of the samples (total aerobic microorganisms, moulds, and yeasts) was performed by conventional plate counts. A set of 54 volatile markers was selected among all the compounds detected by GC×GC-ToFMS. Principal Component Analysis (PCA) was applied in order to establish a relationship between potential volatile markers and the level of microbial contamination. Methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, and 2-hexanone were associated to samples with higher microbial contamination level, especially in rough rice. Moreover, oat exhibited a high GC peak area of 2-hydroxy-6-methylbenzaldehyde, a sexual and alarm pheromone for adult mites, which in the other matrices appeared as a trace component. The number of mites detected in oat grains was correlated to the GC peak area of the pheromone. The HS-SPME/GC×GC-ToFMS methodology can be regarded as the basis for the development of a rapid and versatile method that can be applied in industry to the simultaneous assessment the level of microbiological contamination and for detection of mites in cereals grains and coffee beans
    corecore