20 research outputs found

    Four-year safety and effectiveness data from patients with multiple sclerosis treated with fingolimod : The Spanish GILENYA registry

    Get PDF
    Objective To describe the profile of patients with multiple sclerosis (MS) treated with fingolimod in Spain and to assess the effectiveness and safety of fingolimod after 4 years of inclusion in the Spanish Gilenya Registry. Methods An observational, retrospective/prospective, multicenter case registry, including all patients with relapsing-remitting MS (RRMS) starting treatment with fingolimod in 43 centers in Spain. Analyses were performed in the overall population and in subgroups according to prior disease-modifying therapy (DMT): glatiramer acetate/interferon beta-1 (BRACE), natalizumab, other treatment, or naïve. Results Six hundred and sixty-six evaluable patients were included (91.1% previously treated with at least one DMT). The mean annualized relapse rate (ARR) prior to fingolimod was 1.12, and the mean EDSS at fingolimod initiation was 3.03. Fingolimod reduced the ARR by 71.4%, 75%, 75.5%, and 80.3%, after 1, 2, 3 and 4 years, respectively (p<0.001). This significant reduction in the ARR continuedto be observed in all subgroups. After 4 years, the EDSS showed a minimal deterioration, with the EDSS scores from year 1 to year 4 remaining mostly stable. The percentage of patients without T1 Gd+ lesions progressively increased from 45.6% during the year prior to fingolimod initiation to 88.2% at year 4. The proportion of patients free from new/enlarged T2 lesions after 4 years of fingolimod treatment was 80.3%. This trend in both radiological measures was also observed in the subgroups. Adverse events (AEs) were experienced by up to 41.6% of patients (most commonly: lymphopenia [12.5%] and urinary tract infection [3.7%]). Most AEs were mild in severity, 3.6% of patients had serious AEs. Conclusions The patient profile was similar to other observational studies. The results obtained from the long-term use of fingolimod showed that it was effective, regardless of prior DMT, and it had adequate safety results, with a positive benefit-risk balance

    Kappa free light chains is a valid tool in the diagnostics of MS: A large multicenter study

    Get PDF
    Objective: To validate kappa free light chain (KFLC) and lambda free light chain (LFLC) indices as a diagnostic biomarker in multiple sclerosis (MS). Methods: We performed a multicenter study including 745 patients from 18 centers (219 controls and 526 clinically isolated syndrome (CIS)/MS patients) with a known oligoclonal IgG band (OCB) status. KFLC and LFLC were measured in paired cerebrospinal fluid (CSF) and serum samples. Gaussian mix- ture modeling was used to define a cut-off for KFLC and LFLC indexes. Results: The cut-off for the KFLC index was 6.6 (95% confidence interval (CI) = 5.2-138.1). The cut-off for the LFLC index was 6.9 (95% CI=4.5-22.2). For CIS/MS patients, sensitivity of the KFLC index (0.88; 95% CI = 0.85-0.90) was higher than OCB (0.82; 95%CI = 0.79-0.85; p < 0.001), but specificity (0.83; 95% CI = 0.78-0.88) was lower (OCB = 0.92; 95% CI = 0.89-0.96; p < 0.001). Both sensitivity and specificity for the LFLC index were lower than OCB. Conclusion: Compared with OCB, the KFLC index is more sensitive but less specific for diagnosing CIS/MS. Lacking an elevated KFLC index is more powerful for excluding MS compared with OCB but the latter is more important for ruling in a diagnosis of CIS/MS

    Identification of the Immunological Changes Appearing in the CSF During the Early Immunosenescence Process Occurring in Multiple Sclerosis

    Get PDF
    Patients with multiple sclerosis (MS) suffer with age an early immunosenescence process, which influence the treatment response and increase the risk of infections. We explored whether lipid-specific oligoclonal IgM bands (LS-OCMB) associated with highly inflammatory MS modify the immunological profile induced by age in MS. This cross-sectional study included 263 MS patients who were classified according to the presence (M+, n=72) and absence (M-, n=191) of LS-OCMB. CSF cellular subsets and molecules implicated in immunosenescence were explored. In M- patients, aging induced remarkable decreases in absolute CSF counts of CD4+ and CD8+ T lymphocytes, including Th1 and Th17 cells, and of B cells, including those secreting TNF-alpha. It also increased serum anti-CMV IgG antibody titers (indicative of immunosenescence) and CSF CHI3L1 levels (related to astrocyte activation). In contrast, M+ patients showed an age-associated increase of TIM-3 (a biomarker of T cell exhaustion) and increased values of CHI3L1, independently of age. Finally, in both groups, age induced an increase in CSF levels of PD-L1 (an inductor of T cell tolerance) and activin A (part of the senescence-associated secretome and related to inflammaging). These changes were independent of the disease duration. Finally, this resulted in augmented disability. In summary, all MS patients experience with age a modest induction of T-cell tolerance and an activation of the innate immunity, resulting in increased disability. Additionally, M- patients show clear decreases in CSF lymphocyte numbers, which could increase the risk of infections. Thus, age and immunological status are important for tailoring effective therapies in MS.This work was supported by grants FIS-PI15/00513, FIS-PI18/00572 and RD16/0015/0001 from the Instituto de Salud Carlos III. Ministerio de Ciencia e Innovación, Spain and FEDER: "Una manera de hacer Europa"

    Exome sequencing study in patients with multiple sclerosis reveals variants associated with disease course

    Get PDF
    BACKGROUND: It remains unclear whether disease course in multiple sclerosis (MS) is influenced by genetic polymorphisms. Here, we aimed to identify genetic variants associated with benign and aggressive disease courses in MS patients. METHODS: MS patients were classified into benign and aggressive phenotypes according to clinical criteria. We performed exome sequencing in a discovery cohort, which included 20 MS patients, 10 with benign and 10 with aggressive disease course, and genotyping in 2 independent validation cohorts. The first validation cohort encompassed 194 MS patients, 107 with benign and 87 with aggressive phenotypes. The second validation cohort comprised 257 patients, of whom 224 patients had benign phenotypes and 33 aggressive disease courses. Brain immunohistochemistries were performed using disease course associated genes antibodies. RESULTS: By means of single-nucleotide polymorphism (SNP) detection and comparison of allele frequencies between patients with benign and aggressive phenotypes, a total of 16 SNPs were selected for validation from the exome sequencing data in the discovery cohort. Meta-analysis of genotyping results in two validation cohorts revealed two polymorphisms, rs28469012 and rs10894768, significantly associated with disease course. SNP rs28469012 is located in CPXM2 (carboxypeptidase X, M14 family, member 2) and was associated with aggressive disease course (uncorrected p value < 0.05). SNP rs10894768, which is positioned in IGSF9B (immunoglobulin superfamily member 9B) was associated with benign phenotype (uncorrected p value < 0.05). In addition, a trend for association with benign phenotype was observed for a third SNP, rs10423927, in NLRP9 (NLR family pyrin domain containing 9). Brain immunohistochemistries in chronic active lesions from MS patients revealed expression of IGSF9B in astrocytes and macrophages/microglial cells, and expression of CPXM2 and NLRP9 restricted to brain macrophages/microglia. CONCLUSIONS: Genetic variants located in CPXM2, IGSF9B, and NLRP9 have the potential to modulate disease course in MS patients and may be used as disease activity biomarkers to identify patients with divergent disease courses. Altogether, the reported results from this study support the influence of genetic factors in MS disease course and may help to better understand the complex molecular mechanisms underlying disease pathogenesis

    Consensus statement on the use of alemtuzumab in daily clinical practice in Spain

    Full text link
    Introducción: Alemtuzumab es un fármaco de alta eficacia aprobado por la Agencia Europeade Medicamentos como tratamiento modificador de la enfermedad en pacientes con esclerosismúltiple remitente recurrente.Objetivo: Elaborar un documento de consenso sobre el manejo de alemtuzumab en la práctica clínica habitual, que sea de aplicación en el ámbito español.Desarrollo: Un grupo de expertos en esclerosis múltiple revisó las publicaciones disponibles hasta diciembre de 2017, de tratamiento con alemtuzumab y esclerosis múltiple. Se incluyeron trabajos sobre eficacia, efectividad y seguridad, despistaje de infecciones y vacunación, admi-nistración y monitorización. La propuesta inicial de recomendaciones fue desarrollada por un grupo coordinador con base en la evidencia disponible y en su experiencia clínica. El proceso de consenso se llevó a cabo en 2 etapas; se estableció como porcentaje inicial de acuerdo grupal el 80%. El documento final con todas las recomendaciones acordadas por el grupo de trabajo se sometió a revisión externa y los comentarios recibidos fueron considerados por el grupo coordinador. Conclusiones: El documento aportado pretende ser una herramienta útil para facilitar el manejo del fármaco en condiciones de práctica clínica habitualtIntroduction: Alemtuzumab is a highly effective drug approved by the European Medicines Agency as a disease-modifying drug for the treatment of relapsing-remitting multiple sclerosis. Objective: A consensus document was drafted on the management of alemtuzumab in routineclinical practice in Spain. Development: A group of multiple sclerosis specialists reviewed articles addressing treatment with alemtuzumab in patients with multiple sclerosis and published before December 2017. The included studies assessed the drug’s efficacy, effectiveness, and safety; screening for infections and vaccination; and administration and monitoring aspects. The initial proposed recommendations were developed by a coordinating group and based on the available evidence and their clinical experience. The consensus process was carried out in 2 stages, with the initial threshold percentage for group agreement established at 80%. The final document with all the recom-mendations agreed by the working group was submitted for external review and the comments received were considered by the coordinating group. Conclusion: The present document is intended to be used as a tool for optimising the management of alemtuzumab in routine clinical practiceLa elaboración de este manuscrito ha sido financiada por Sanofi-Genzym

    Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis

    No full text
    Changes in blood natural killer (NK) cells, important players of the immune innate system, have been described in multiple sclerosis (MS). We studied percentages and total cell counts of different effector and regulatory NK cells in cerebrospinal fluid (CSF) of MS patients and other neurological diseases to gain clearer knowledge of the role of these cells in neuroinflammation. NK cell subsets were assessed by flow cytometry in CSF of 85 consecutive MS patients (33 with active disease and 52 with stable MS), 16 with other inflammatory diseases of the central nervous system (IND) and 17 with non‐inflammatory neurological diseases (NIND). MS patients showed a decrease in percentages of different CSF NK subpopulations compared to the NIND group. However, absolute cell counts showed a significant increase of all NK subsets in MS and IND patients, revealing that the decrease in percentages does not reflect a real reduction of these immune cells. Remarkably, MS patients showed a significant increase of regulatory/effector (CD56bright/CD56dim) NK ratio compared to IND and NIND groups. In addition, MS activity associated with an expansion of NK T cells. These data show that NK cell subsets do not increase uniformly in all inflammatory neurological disease and suggest strongly that regulatory CD56bright and NK T cells may arise in CSF of MS patients as an attempt to counteract the CNS immune activation characteristic of the disease.This work was supported by grants from Plan Estatal de I+D+I 2013–2016, PI12‐00239 from FIS, Instituto de Salud Carlos III and FEDER and SAF 2012‐34670 from Ministerio de Economía y Competitividad. Raquel Alenda is recipient of a research contract of REEM from the Instituto de Salud Carlos III (Spain)

    Gut dysbiosis and neuroimmune responses to brain infection with Theiler's murine encephalomyelitis virus

    Get PDF
    Recent studies have begun to point out the contribution of microbiota to multiple sclerosis (MS) pathogenesis. Theiler's murine encephalomyelitis virus induced demyelinating disease (TMEV-IDD) is a model of progressive MS. Here, we first analyze the effect of intracerebral infection with TMEV on commensal microbiota and secondly, whether the early microbiota depletion influences the immune responses to TMEV on the acute phase (14 dpi) and its impact on the chronic phase (85 dpi). The intracranial inoculation of TMEV was associated with a moderate dysbiosis. The oral administration of antibiotics (ABX) of broad spectrum modified neuroimmune responses to TMEV dampening brain CD4 + and CD8 + T infiltration during the acute phase. The expression of cytokines, chemokines and VP2 capsid protein was enhanced and accompanied by clusters of activated microglia disseminated throughout the brain. Furthermore, ABX treated mice displayed lower levels of CD4 + and CD8 + T cells in cervical and mesenteric lymph nodes. Increased mortality to TMEV was observed after ABX cessation at day 28pi. On the chronic phase, mice that survived after ABX withdrawal and recovered microbiota diversity showed subtle changes in brain cell infiltrates, microglia and gene expression of cytokines. Accordingly, the surviving mice of the group ABX-TMEV displayed similar disease severity than TMEV mic
    corecore