560 research outputs found

    Dynamic control of modern, network-based epidemic models

    Get PDF
    In this paper we make the first steps to bridge the gap between classic control theory and modern, network-based epidemic models. In particular, we apply nonlinear model predictive control (NMPC) to a pairwise ODE model which we use to model a susceptible-infectious-susceptible (SIS) epidemic on nontrivial contact structures. While classic control of epidemics concentrates on aspects such as vaccination, quarantine, and fast diagnosis, our novel setup allows us to deliver control by altering the contact network within the population. Moreover, the ideal outcome of control is to eradicate the disease while keeping the network well connected. The paper gives a thorough and detailed numerical investigation of the impact and interaction of system and control parameters on the controllability of the system. For a certain combination of parameters, we used our method to identify the critical control bounds above which the system is controllable. We foresee that our approach can be extended to even more realistic or simulation-based models with the aim of applying these to real-world situations

    Characteristics of ferroelectric-ferroelastic domains in N{\'e}el-type skyrmion host GaV4_4S8_8

    Get PDF
    GaV4_4S8_8 is a multiferroic semiconductor hosting N{\'e}el-type magnetic skyrmions dressed with electric polarization. At Ts_s = 42K, the compound undergoes a structural phase transition of weakly first-order, from a non-centrosymmetric cubic phase at high temperatures to a polar rhombohedral structure at low temperatures. Below Ts_s, ferroelectric domains are formed with the electric polarization pointing along any of the four <111>\left< 111 \right> axes. Although in this material the size and the shape of the ferroelectric-ferroelastic domains may act as important limiting factors in the formation of the N{\'e}el-type skyrmion lattice emerging below TC_C=13\:K, the characteristics of polar domains in GaV4_4S8_8 have not been studied yet. Here, we report on the inspection of the local-scale ferroelectric domain distribution in rhombohedral GaV4_4S8_8 using low-temperature piezoresponse force microscopy. We observed mechanically and electrically compatible lamellar domain patterns, where the lamellae are aligned parallel to the (100)-type planes with a typical spacing between 100 nm-1.2 μ\mum. We expect that the control of ferroelectric domain size in polar skyrmion hosts can be exploited for the spatial confinement and manupulation of N{\'e}el-type skyrmions

    The white collar complex is essential for sexual reproduction but dispensable for conidiation and invasive growth in Fusarium verticillioides

    Get PDF
    Fvwc1 and Fvwc2, orthologues of the wc-1 and wc-2 genes encoding for proteins of the white collar complex (WCC) in Neurospora crassa were cloned from Fusarium verticillioides and lack-of-function wc mutants were obtained by targeted gene disruption. Photo-conidiation was found to be absent in F. verticillioides, on the contrary, the wild type strain produced less conidia under continuous illumination than in the dark. Inactivation of any of the wc genes led to total female sterility, without affecting male fertility or asexual conidiation. No loss in colonization capability/invasive growth of the wc mutants was observed, when assessed on tomato fruits. Both Fvwc1 and Fvwc2 showed constitutive expression in the wild type cultures incubated in the dark and exposure to light caused only negligible increases in their transcription. Both Fvwc1 and Fvwc2 were down-regulated in a ΔFvmat1-2-1 gene disruption mutant, lacking a functional mating type (mat1-2-1) gene, suggesting that the MAT1-2-1 product has a positive regulatory effect on the white collar genes

    Electrically and mechanically tunable electron spins in silicon carbide color centers

    Full text link
    The electron spins of semiconductor defects can have complex interactions with their host, particularly in polar materials like SiC where electrical and mechanical variables are intertwined. By combining pulsed spin resonance with ab-initio simulations, we show that spin-spin interactions within SiC neutral divacancies give rise to spin states with an enhanced Stark effect, sub-10**-6 strain sensitivity, and highly spin-dependent photoluminescence with intensity contrasts of 15-36%. These results establish SiC color centers as compelling systems for sensing nanoscale fields.Comment: 10 pages, 4 figures, 1 tabl

    Glancing through the debris disk: Photometric analysis of DE Boo with CHEOPS

    Get PDF
    Aims: DE Boo is a unique system, with an edge-on view through the debris disk around the star. The disk, which is analogous to the Kuiper belt in the Solar System, was reported to extend from 74 to 84 AU from the central star. The high photometric precision of the Characterising Exoplanet Satellite (CHEOPS) provided an exceptional opportunity to observe small variations in the light curve due to transiting material in the disk. This is a unique chance to investigate processes in the debris disk. Methods: Photometric observations of DE Boo of a total of four days were carried out with CHEOPS. Photometric variations due to spots on the stellar surface were subtracted from the light curves by applying a two-spot model and a fourth-order polynomial. The photometric observations were accompanied by spectroscopic measurements with the 1m RCC telescope at Piszkésteto and with the SOPHIE spectrograph in order to refine the astrophysical parameters of DE Boo. Results: We present a detailed analysis of the photometric observation of DE Boo. We report the presence of nonperiodic transient features in the residual light curves with a transit duration of 0.3-0.8 days. We calculated the maximum distance of the material responsible for these variations to be 2.47 AU from the central star, much closer than most of the mass of the debris disk. Furthermore, we report the first observation of flaring events in this system. Conclusions: We interpreted the transient features as the result of scattering in an inner debris disk around DE Boo. The processes responsible for these variations were investigated in the context of interactions between planetesimals in the system. This article uses data from CHEOPS programme CH_PR100010

    Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide

    Get PDF
    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defects electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process

    Optical Polarization of Nuclear Spins in Silicon Carbide

    Get PDF
    We demonstrate optically pumped dynamic nuclear polarization of 29Si nuclear spins that are strongly coupled to paramagnetic color centers in 4H- and 6H-SiC. The 99 ± 1% degree of polarization at room temperature corresponds to an effective nuclear temperature of 5 K. By combining ab initio theory with the experimental identification of the color centers’ optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging

    Relationship between weather conditions and admissions for ischemic stroke and subarachnoid hemorrhage

    Get PDF
    AIM: To assess impacts of different weather conditions on hospitalizations of patients with ischemic strokes and subarachnoid hemorrhages (SAH) in South Florida. METHODS: Diagnostic data of patients with spontaneous SAH and strokes were recorded between June 2010 and July 2013. Daily synchronous forecast charts were collected from the National Weather Service and the whole data were matched prospectively. The incidence rate ratio (IRR) was calculated. RESULTS: Increased incidence rate of ischemic stroke was consistent with the daily lowest and highest air pressure (IRR 1.03, P=0.128 and IRR 0.98, P=0.380, respectively), highest air temperature (IRR 0.99, P=0.375), and presence of hurricanes or storms (IRR 0.65, P=0.054). Increased incidence of SAH cases was consistent with daily lowest and highest air pressure (IRR 0.87, P<0.001 and IRR 1.08, P=0.019, respectively) and highest air temperature (IRR 0.98, P<0.001). Presence of hurricanes and/or tropical storms did not influence the frequency of SAH. We found no relationship between the presence of fronts and the admissions for ischemic stroke or SAH. CONCLUSION: Higher number of ischemic stroke and SAH cases can be expected with the daily lowest and highest air pressure, highest air temperature. Presence of hurricanes or tropical storms increased the risk of ischemic stroke but not the SAH. These findings can help to develop preventive health plans for cerebrovascular diseases
    corecore