6 research outputs found
Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia
X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4âdependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8â207.8, P < 0.001). The patientsâ susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia
Immunological Changes in Blood of Newborns Exposed to Anti-TNF-α during Pregnancy
BackgroundAlthough anti-TNF-α monoclonal antibodies are considered safe during pregnancy, there are no studies on the development of the exposed-infant immune system. The objective was to study for the first time the impact of throughout pregnancy exposure to anti-TNF-α has an impact in the development of the infantâs immune system, especially B cells and the IL-12/IFN-Îł pathway.MethodsProspective study of infants born to mothers with inflammatory bowel disease treated throughout pregnancy with anti-TNF-α (adalimumab/infliximab). Infants were monitored both clinically and immunologically at birth and at 3, 6, 12, and 18âmonths.ResultsWe included seven patients and eight healthy controls. Exposed infants had detectable levels of anti-TNF-α until 6âmonths of age; they presented a more immature B- and helper T-phenotype that normalized within 12âmonths, with normal immunoglobulin production and vaccine responses. A decreased Treg cell frequency at birth that inversely correlated with motherâs peripartum anti-TNF-α levels was observed. Also, a decreased response after mycobacterial challenge was noted. Clinically, no serious infections occurred during follow-up. Four of seven had atopia.ConclusionThis study reveals changes in the immune system of infants exposed during pregnancy to anti-TNF-α. We hypothesize that a Treg decrease might facilitate hypersensitivity and that defects in IL-12/IFN-Îł pathway might place the infant at risk of intracellular infections. Pediatricians should be aware of these changes. Although new studies are needed to confirm these results, our findings are especially relevant in view of a likely increase in the use of these drugs during pregnancy in the coming years
Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia
X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4-dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8-207.8, P < 0.001). The patients' susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia.MyD88- and IRAK-4-deficient patients have a higher risk of hypoxemic COVID-19 pneumonia than individuals of similar age in the general population, due to impaired TLR7-dependent type I IFN production
Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia
X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4âdependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8â207.8, P < 0.001). The patientsâ susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia