561 research outputs found

    Emotional engagements predict and enhance social cognition in young chimpanzees

    Get PDF
    Social cognition in infancy is evident in coordinated triadic engagements, that is, infants attending jointly with social partners and objects. Current evolutionary theories of primate social cognition tend to highlight species differences in cognition based on human-unique cooperative motives. We consider a developmental model in which engagement experiences produce differential outcomes. We conducted a 10-year-long study in which two groups of laboratory-raised chimpanzee infants were given quantifiably different engagement experiences. Joint attention, cooperativeness, affect, and different levels of cognition were measured in 5- to 12-month-old chimpanzees, and compared to outcomes derived from a normative human database. We found that joint attention skills significantly improved across development for all infants, but by 12 months, the humans significantly surpassed the chimpanzees. We found that cooperativeness was stable in the humans, but by 12 months, the chimpanzee group given enriched engagement experiences significantly surpassed the humans. Past engagement experiences and concurrent affect were significant unique predictors of both joint attention and cooperativeness in 5- to 12-month-old chimpanzees. When engagement experiences and concurrent affect were statistically controlled, joint attention and cooperation were not associated. We explain differential social cognition outcomes in terms of the significant influences of previous engagement experiences and affect, in addition to cognition. Our study highlights developmental processes that underpin the emergence of social cognition in support of evolutionary continuity

    Kin selection, quorum sensing and virulence in pathogenic bacteria

    Get PDF
    Bacterial growth and virulence often depends upon the cooperative release of extracellular factors excreted in response to quorum sensing (QS).We carried out an in vivo selection experiment in mice to examine how QS evolves in response to variation in relatedness (strain diversity), and the consequences for virulence. We started our experiment with two bacterial strains: a wild-type that both produces and responds to QS signal molecules, and a lasR (signal-blind) mutant that does not release extracellular factors in response to signal. We found that: (i) QS leads to greater growth within hosts; (ii) high relatedness favours the QS wild-type; and (iii) low relatedness favours the lasR mutant. Relatedness matters in our experiment because, at relatively low relatedness, the lasR mutant is able to exploit the extracellular factors produced by the cells that respond to QS, and hence increase in frequency. Furthermore, our results suggest that because a higher relatedness favours cooperative QS, and hence leads to higher growth, this will also lead to a higher virulence, giving a relationship between relatedness and virulence that is in the opposite direction to that usually predicted by virulence theory

    Radio Monitoring Campaigns of Six Strongly Lensed Quasars

    Get PDF
    We observed six strongly lensed, radio-loud quasars (MG 0414+0534, CLASS B0712+472, JVAS B1030+074, CLASS B1127+385, CLASS B1152+199, and JVAS B1938+666) in order to identify systems suitable for measuring cosmological parameters using time delays between their multiple images. These systems are in standard two and four image configurations, with B1938 having a faint secondary pair of images. Two separate monitoring campaigns were carried out using the VLA and upgraded JVLA. Lightcurves were extracted for each individual lensed image and analyzed for signs of intrinsic variability. While it was not possible to measure time delays from these data, χ2\chi^2-based and structure function tests found evidence for variability in a majority of the lightcurves. B0712 and B1030 had particularly strong variations, exhibiting linear flux trends. These results show that most of these systems should be targeted with followup monitoring campaigns, especially B0712 and B1030.Comment: Submitted to MNRA

    Chronos and KAIROS: MOSFIRE observations of post-starburst galaxies in z ∼ 1 clusters and groups

    Get PDF
    We present an exploration of ∼500 spectroscopically confirmed galaxies in and around two large-scale structures (LSSs) at z ∼ 1 drawn from the Observations of Redshift Evolution in Large Scale Environments survey, an ongoing, wide-field photometric and spectroscopic campaign targeting a large ensemble of LSSs at 0.6 < z < 1.3. A sub-sample of these galaxies (∼150) was targeted for the initial phase of a near-infrared MOSFIRE spectroscopic campaign investigating the differences in selections of galaxies that had recently ended a burst of star formation and/or had rapidly quenched (i.e. post-starburst/K+A galaxies). Selection with MOSFIRE utilizing the H α and [N II] emission features resulted in a post-starburst sample more than double that selected by traditional z ∼ 1 (observed-frame optical) methods even after the removal of the relatively large fraction of dusty starburst galaxies selected through traditional methods. While the traditional post-starburst fraction increased with increasing global density, the MOSFIRE-selected post-starburst fraction was found to be constant across field, group, and cluster environments. However, this fraction computed relative to the number of star-forming galaxies was observed to elevate in the cluster environment. Post-starbursts selected with MOSFIRE exhibited moderately strong [O II] emission originating from activity other than star formation. Such galaxies, termed K+A with ImposteR [O II]-derived Star formation (KAIROS) galaxies, were found to be younger than and likely undergoing feedback absent or diminished in their optically selected counterparts. A comparison between the environments of the two types of post-starbursts suggested a picture in which the evolution of a post-starburst galaxy is considerably different in cluster environments than in the more rarefied environments of a group or the field

    Size Matters: Microservices Research and Applications

    Full text link
    In this chapter we offer an overview of microservices providing the introductory information that a reader should know before continuing reading this book. We introduce the idea of microservices and we discuss some of the current research challenges and real-life software applications where the microservice paradigm play a key role. We have identified a set of areas where both researcher and developer can propose new ideas and technical solutions.Comment: arXiv admin note: text overlap with arXiv:1706.0735

    Suppressed star formation by a merging cluster system

    Get PDF
    We examine the effects of an impending cluster merger on galaxies in the large-scale structure (LSS) RX J0910 at z =1.105. Using multiwavelength data, including 102 spectral members drawn from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey and precise photometric redshifts, we calculate star formation rates and map the specific star formation rate density of the LSS galaxies. These analyses along with an investigation of the colour–magnitude properties of LSS galaxies indicate lower levels of star formation activity in the region between the merging clusters relative to the outskirts of the system. We suggest that gravitational tidal forces due to the potential of the merging haloes may be the physical mechanism responsible for the observed suppression of star formation in galaxies caught between the merging clusters

    X-ray-emitting active galactic nuclei from z = 0.6 to 1.3 in the intermediate- and high-density environments of the ORELSE survey

    Get PDF
    We studied active galactic nucleus (AGN) activity in 12 large-scale structures (LSSs) in the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey, at 0.65 < z < 1.28, using a combination of Chandra observations, optical and NIR imaging and spectroscopy. We located a total of 61 AGNs that were successfully matched to optical counterparts in the LSSs. We found that AGN populations across our sample had more recently had starburst events compared to the overall galaxy populations. We find no relation between AGN activity and location within the LSSs, suggesting triggering mechanisms that depend on global environment are at most sub-dominant. To focus on differences between our AGNs, we grouped them into four sub-samples based on the spectral properties of their parents LSSs. We found one of the sub-samples, SG0023 & SC1604, stood out from the others. AGNs in this sample were disproportionately luminous. These AGNs had the most recent starburst events, in contrast to their parent populations. Additionally, both the AGNs and the overall galaxy population in SG0023 & SC1604 had the largest fraction of close kinematic pairs, which indicates a higher rate of galaxy mergers and interactions. These results suggest that major mergers are driving AGN activity in SG0023 & SC1604, while other processes are likely triggering less luminous AGNs in the rest of our sample. Additionally, minor mergers are unlikely to play a significant role, since the same conditions that lead to more major mergers should also lead to more minor mergers, which is not observed in SG0023 & SC1604
    corecore