51,025 research outputs found

    Gravitational lensing statistical properties in general FRW cosmologies with dark energy component(s): analytic results

    Get PDF
    Various astronomical observations have been consistently making a strong case for the existence of a component of dark energy with negative pressure in the universe. It is now necessary to take the dark energy component(s) into account in gravitational lensing statistics and other cosmological tests. By using the comoving distance we derive analytic but simple expressions for the optical depth of multiple image, the expected value of image separation and the probability distribution of image separation caused by an assemble of singular isothermal spheres in general FRW cosmological models with dark energy component(s). We also present the kinematical and dynamical properties of these kinds of cosmological models and calculate the age of the universe and the distance measures, which are often used in classical cosmological tests. In some cases we are able to give formulae that are simpler than those found elsewhere in the literature, which could make the cosmological tests for dark energy component(s) more convenient.Comment: 14 pages, no figure, Latex fil

    High-frequency Light Reflector via Low-frequency Light Control

    Get PDF
    We show that the momentum of light can be reversed via the atomic coherence created by another light with one or two orders of magnitude lower frequency. Both the backward retrieval of single photons from a timed Dicke state and the reflection of continuous waves by high-order photonic band gaps are analysed. The required control field strength scales linearly with the nonlinearity order, which is explained by the dynamics of superradiance lattices. Experiments are proposed with 85^{85}Rb atoms and Be2+^{2+} ions. This holds promise for light-controllable X-ray reflectors.Comment: 5 pages, 5 figure

    Robustness of predator-prey models for confinement regime transitions in fusion plasmas

    Get PDF
    Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as ā€œrobustnessā€ for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas

    Analysis of some localized boundary-domain integral equations for transmission problems with variable coefficients

    Get PDF
    This is the post-print version of the Article. The official published version can be found at the links below - Copyright @ 2011 BirkhƤuser Boston.Some segregated systems of direct localized boundary-domain integral equations (LBDIEs) associated with several transmission problems for scalar PDEs with variable coefficients are formulated and analyzed for a bounded domain composed of two subdomains with a coefficient jump over the interface. The main results established in the paper are the LBDIE equivalence to the original transmission problems and the invertibility of the corresponding localized boundary-domain integral operators in corresponding Sobolev spaces function spaces.This research was supported by the EPSRC grant EP/H020497/1: ā€Mathematical analysis of Localized Boundary-Domain Integral Equations for Variable-Coefficient Boundary Value Problemsā€ and partly by the Georgian Technical University grant in the case of the third author

    Superradiance Lattice

    Get PDF
    We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on electromagnetically induced transparency (EIT). For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective uniform force in momentum space. The quantum lattice dynamics, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic localization can be observed in the SL. The two-dimensional SL provides a flexible platform for Dirac physics in graphene. The SL can be extended to three and higher dimensions where no analogous real space lattices exist with new physics waiting to be explored.Comment: 6pages, 4 figure
    • ā€¦
    corecore